[1] ZHENG Xue, WANG Bing, ZHAO Yunmeng, et al. A knowledge graph method for hazardous chemical management: Ontology design and entity identification[J]. Neurocomputing, 2021, 430: 104-111.
[2] 范义红, 雷伟英, 李鹤, 等. 基于侧翻预警及星鸦优化算法车辆参数辨识的半挂汽车列车防侧翻仿真研究[J]. 时代汽车, 2024(20): 175-179.
FAN Yihong, LEI Weiying, LI He, et al. Research on anti-rollover simulation of semi-trailer car train based on rollover warning and vehicle parameter identification and Xingya optimization algorithm[J]. Auto Time, 2024(20): 175-179.
[3] HOU Junjian, LEI Haizhu, FU Zhijun, et al. A novel rollover warning approach for commercial vehicles using unscented Kalman filter[J]. Mathematical Problems in Engineering, 2022, 2022: 7503715.
[4] TAN Xiaoqiang, LI Zefan, WANG Xingyu, et al. Research on vehicle rollover risk prediction based on CNN-LSTM and unscented Kalman filter algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 6503312.
[5] CRUZ P, ECHAVEGUREN T, GONZLEZ P. Estimation of heavy vehicle rollover potential using reliability principles[J]. Revista Ingenieria de Construccion, 2017, 32(1): 5-14.
[6] YAMAMOTO K, EJIRI A, OYA M. Rollover prevention control of vehicles with crosswind disturbance[J]. Artificial Life and Robotics, 2021, 26(2): 250-258.
[7] 朱天军, 麻威, 王振峰, 等. 基于AdaBoost算法的重型车辆侧翻预警研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(8): 25-33.
ZHU Tianjun, MA Wei, WANG Zhenfeng, et al. Rollover warning study of heavy vehicle based on AdaBoost algorithm[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(8): 25-33.
[8] 史鹏坤, 许江淳, 李玉惠, 等. 基于MEMS的车辆预警系统及其姿态算法设计[J]. 电子器件, 2018, 41(3): 799-803.
SHI Pengkun, XU Jiangchun, LI Yuhui, et al. Design of vehicle early warning system and attitude algorithm based on MEMS[J]. Chinese Journal of Electron Devices, 2018, 41(3): 799-803.
[9] 金智林, 严正华. 基于二次预测型横向载荷转移率的汽车侧翻预警研究[J]. 中国机械工程, 2019, 30(15): 1790-1795.
JIN Zhilin, YAN Zhenghua. Research on vehicle rollover warning based on secondary predictive lateral load transfer ratio[J]. China Mechanical Engineering, 2019, 30(15): 1790-1795.
[10] 汪佳铭, 胡明茂, 师国东, 等. 基于CNN-LSTM的重型自卸车侧翻预警模型[J]. 滨州学院学报, 2024, 40(2): 81-89.
WANG Jiaming, HU Mingmao, SHI Guodong, et al. Rollover warning study of heavy dump truck based on CNN-LSTM[J]. Journal of Binzhou University, 2024, 40(2): 81-89.
[11] WANG Mengmeng, LIU Jinhao, ZHANG Hongye, et al. Vehicle rollover warning system based on TTR method with inertial measurement[J]. Measurement Science and Technology, 2022, 33(1): 015108.
[12] 周兵, 梁帅, 吴晓建, 等. 基于LSTM和改进TTR算法的车辆辅助驾驶侧翻预警[J]. 湖南大学学报(自然科学版), 2023, 50(12): 155-167.
ZHOU Bing, LIANG Shuai, WU Xiaojian, et al. Vehicle assisted driving rollover warning based on LSTM and improved TTR algorithm[J]. Journal of Hunan University (Natural Sciences), 2023, 50(12): 155-167.
[13] 夏启, 王舒楠, 齐连军, 等. 矿用货车自动驾驶条件下侧翻安全分析与极限参数研究[J]. 汽车工程学报, 2022, 12(1): 23-32.
XIA Qi, WANG Shu’nan, QI Lianjun, et al. Rollover safety analysis and speed limit calculation for mining trucks under autonomous driving conditions[J]. Chinese Journal of Automotive Engineering, 2022, 12(1): 23-32.
[14] DOMEYER J E, LEE J D, TOYODA H. Vehicle automation—other road user communication and coordination: Theory and mechanisms[J]. IEEE Access, 2020, 8: 19860-19872.
[15] 谭峰, 李成南, 萧红, 等. 基于LSTM循环神经网络的数控机床热误差预测方法[J]. 仪器仪表学报, 2020, 41(9): 79-87.
TAN Feng, LI Chengnan, XIAO Hong, et al. A thermal error prediction method for CNC machine tool based on LSTM recurrent neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 79-87.
[16] 徐晓美, 王雨婷, 蔡浩浩. 基于MPC的半挂汽车列车高速变道稳定性研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(2): 136-143.
XU Xiaomei, WANG Yuting, CAI Haohao. High-speed lane-change stability of the tractor-semitrailer based on the model predictive control[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(2): 136-143.
[17] 冯樱, 乔宝山, 袁显举, 等. 智能商用汽车防侧翻轨迹跟踪集成控制器设计[J]. 重庆交通大学学报(自然科学版), 2024, 43(11): 122-129.
FENG Ying, QIAO Baoshan, YUAN Xianju, et al. Design of integrated controller for anti-rollover trajectory tracking of intelligent commercial vehicles[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(11): 122-129. |