中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2015, Vol. 34 ›› Issue (4): 68-72.DOI: 10.3969/j.issn.1674-0696.2015.04.12

• 道路与铁道工程 • 上一篇    下一篇

基于模糊神经网络的高寒路基纵向裂缝危险度综合评价

叶敏,王铁权   

  1. 长安大学 公路养护装备国家工程实验室,陕西 西安 710064
  • 收稿日期:2014-09-01 修回日期:2014-11-20 出版日期:2015-08-30 发布日期:2015-09-18
  • 作者简介:叶敏(1978—),男,吉林磐石人,副教授,博士,主要从事模糊神经网络等智能评价方法的研究。E-mail:mingye@chd.edu.cn。
  • 基金资助:
    交通运输部科技项目(201231879210)

Comprehensive Risk Evaluation on the Longitudinal Cracks of Permafrost Subgrade Based on Fuzzy Neural Network

Ye Min, Wang Tiequan   

  1. National Engineering Laboratory for Highway Maintenance Equipment, Chang’an University, Xi’an 710064, Shaanxi, China
  • Received:2014-09-01 Revised:2014-11-20 Online:2015-08-30 Published:2015-09-18

摘要: 以高寒地区自然环境因素、设计因素、冻土因素三类致灾因子指标作为输入变量,根据模糊推理规则构建路基纵向裂缝评价的非线性映射关系,通过对输入知识的预处理和输出知识的后处理,将模糊逻辑推理融入神经网络的非线性计算中,建立了综合评价模型。以青藏公路典型路段K3+020段为例,基于11类致灾因子评价该路段纵向裂缝的危险度为2级。结果表明:高寒路基纵向裂缝危险度模糊神经网络综合评价模型可用于评价纵向裂缝的发育程度,经济性好、实用性强。

关键词: 道路工程, 路基工程, 纵向裂缝, 致灾因子, 模糊神经网络

Abstract: The natural environment factor, the design factor and the frost soil factor for the permafrost subgrade crack damage evaluation were selected as the input vector. According to the fuzzy rule, the nonlinear mapping relation of the longitudinal crack evaluation of subgrade was established. Through the combination of input pretreatment and output post treatment, the fuzzy rule was embedded into the nonlinear calculation of the neural network. It evaluated the longitudinal cracks risk degree in the section of K3+020 of QinghaiTibet Highway and the disk degree was defined as second grade based on 11 kinds of damage factors. The results show that the model can quickly, accurately and objectively evaluate the subgrade longitudinal cracks risk degree in permafrost regions.

Key words: road engineering, subgrade, longitudinal cracks, hazard factor, fuzzy neural network

中图分类号: