重庆交通大学学报(自然科学版) ›› 2008, Vol. 27 ›› Issue (6): 1142-1145.
邓天民1,2, 于勇1, 邵毅明1
DENG Tian-min1,2, YU Yong1, SHAO Yi-ming1
摘要: 提出了一种在静止背景交通图像序列中运动车辆的检测和分类方法,即基于GVF-Snake模型和惯量椭圆的车辆分类算法。利用混和高斯模型(GMM)、期望最大化(EM)估计算法、改进GVF-Snake模型,从序列交通视频图像中检测出运动车辆;然后,借用刚体惯量椭圆原理,计算运动车辆等效椭圆偏心率,从而建立车长-车投影面积-车的等效椭圆偏心率三参数建立了车辆分类器。该方法的车辆检测与分类都是基于数理统计原理,算法复杂度小,可用数字逻辑编程实现,适合在嵌入式系统中应用。
中图分类号: