中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (11): 68-75.DOI: 10.3969/j.issn.1674-0696.2025.11.09

• 交通运输+人工智能 • 上一篇    

基于动态任务图的机场停机位智能分配研究

侯谨毅,李博昱,李海丰,范龙飞,陈宇航   

  1. (中国民航大学 计算机科学与技术学院,天津 300300)
  • 收稿日期:2024-12-20 修回日期:2025-08-12 发布日期:2025-11-27
  • 作者简介:侯谨毅(1987—),男,天津人,讲师,博士,主要从事机场场面运行管理方面的研究。E-mail:houjinyi@tju.edu.cn 通信作者:李海丰(1987—),男,内蒙古通辽人,教授,博士,主要从事智慧机场运行与控制方面的研究。E-mail:hfli@cauc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(62373365);中央高校基本科研业务费专项项目(3122021051);天津市教委科研计划项目(2021KJ036)

Intelligent Allocation of Airport Gate Assignment Based on Dynamic Task Graphs

HOU Jinyi, LI Boyu, LI Haifeng, FAN Longfei, CHEN Yuhang   

  1. (School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China)
  • Received:2024-12-20 Revised:2025-08-12 Published:2025-11-27

摘要: 航空运输中,机场航班和停机位经常会发生变化,需要对停机位进行高效的动态分配。提出一种基于动态任务图和优势演员-评论家算法(A2C)的机位智能分配方案,构建基于图结构方法的航班-机位动态任务图模型,提取图特征向量构成任务状态空间,构造机位分配智能体模型,设计基于优势演员-评论家算法的求解方法。利用北京大兴国际机场数据进行实验研究,结果表明:提出的机位分配方案使停机位预分配靠桥率提升5.6%,停机位动态分配靠桥率提升6.4%。该分配方案实现高效的机位动态智能分配,为繁忙机场停机位资源调度提供决策支持。

关键词: 交通运输工程;停机位分配;优势演员-评论家算法;图模型;多目标优化;深度强化学习

Abstract: In air transportation, flights and aircraft parking positions at airports often change, and the efficient dynamic allocation of parking bays is necessary. An intelligent aircraft parking position allocation scheme based on dynamic task graphs and the advantage actor-critic algorithm (A2C) was proposed. A dynamic task graph model of flights and aircraft parking positions was constructed by the graph structure method. Graph feature vectors were extracted to form the task state space, and an intelligent agent model for aircraft parking position allocation was constructed. A solution method based on the advantage actor-critic algorithm was designed. Experimental research was conducted by the use of the data of Beijing Daxing International Airport. The results show that the proposed aircraft parking position allocation scheme increases the bridge-proximity rate of pre-allocated aircraft parking positions by 5.6%, and the bridge-proximity rate of dynamically allocated aircraft parking positions by 6.4%. The proposed allocation scheme enables efficient dynamic and intelligent allocation of aircraft parking positions and provides decision support for the scheduling of aircraft parking position resources at busy airports.

Key words: traffic and transportation engineering; gate assignment; advantage actor-critic algorithm; graphical model; multi-objective optimization; deep reinforcement learning

中图分类号: