|
基于像素-亚像素级形态分析的路面三维图像裂缝自动识别算法
彭博1, 黄大荣1,郭黎2, 蔡晓禹1, 李少博1
2018, 37(09):
34-42.
DOI: 10.3969/j.issn.1674-0696.2018.09.06
为了准确有效地检测路面裂缝,为路面性能评估、路面养护管理、路面结构和材料设计提供数据支撑,针对1 mm/像素路面三维图像提出了基于像素-亚像素级形态分析的裂缝自动识别算法。首先,应用Canny算法和区域生长算法检测候选裂缝目标并进行融合处理,得到融合分割图像;然后,提取并重构像素级与亚像素级图像骨架;最后,融合像素-亚像素级骨架图像,综合利用形态学算子和轮廓长度、圆度、扁平率等连通域形态特征提取裂缝目标。基于150张路面三维图像(992像素×992像素)对笔者算法和另外5种既有算法进行测试,结果显示,笔者算法获得了较高的准确率(均值90.45%)和召回率(均值96.49%),F均值由高至低分别为:笔者算法(90.72%)、种子并行生长算法(39.65%)、GAVILN算法(33.46%)、各向异性测度算法(30.32%)、Canny检测(25.85%)和OTSU分割法(5.85%)。算法适用性分析表明,笔者算法较适用于细小裂缝图像识别,种子并行生长算法、GAVILN算法和各向异性测度算法有利于宽而明显的裂缝识别,而Canny和OTSU通常可作为裂缝识别算法中的一个图像处理环节。
参考文献 |
相关文章 |
计量指标
|