中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2013, Vol. 32 ›› Issue (4): 555-559.DOI: 10.3969 /j.issn.1674-0696.2013.04.02

Previous Articles     Next Articles

Finite Element Model Updating of Single Pylon Cable-Stayed Bridges Based on RBF-ANN

Shan Deshan,Ding Dehao,Li Qiao,Huang Zhen   

  1. Department of Bridge Engineering,School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,Sichuan,China
  • Received:2013-03-24 Revised:2013-04-19 Online:2013-08-15 Published:2014-10-27

基于 RBF 神经网络的单塔斜拉桥模型修正

单德山,丁德豪,李 乔,黄 珍   

  1. 西南交通大学 土木工程学院 桥梁工程系,四川 成都 610031
  • 作者简介:单德山(1969—),男,四川大竹人,教授,博士,主要从事桥梁结构健康监测与损伤识别、大跨度桥梁施工控制方面的研究。E-mail:dsshan@163.com。
  • 基金资助:
    国家自然科学基金项目( 51078316) ; 四川省科技计划项目( 2011JY0032) ; 铁路科技研究开发计划项目( 2011G026-E,2012G013-C)

Abstract: In order to obtain the contemporary state for the cable replacement project of one certain existing single pylon cable-stayed bridge with double cable plane,a new combined method for finite element model updating is proposed. In the light of the parameterized model updating theory,the relative sensitivities of the calculated design parameters are analyzed to determine the will be modified parameters. Substructure method is introduced in the model updating process for meet the requirement of the parameter’s discreteness,and the calculated parameters in each substructure is regard as invariables. The radial basis function neural network ( RBF) is adopted as the optimization algorithm of model updating. Combination the substructure method and RBF,the intrinsic“inverse problem”of finite element model updating is transformed as the“forward problem”. The substructure partition,RBF neural network construction and its input and output parameters determination are discussed as well. A certain existing single pylon cable-stayed bridge is taken as the case study to verify the proposed combined model updating algorithm. The result shows that the discrepancy between the calculated value and measured valued decrease dramatically before and after the finite element model updating.

Key words: finite element model updating, radial basis function neural network, single pylon cable-stayed bridge, substruc-ture, relative sensitivity

摘要: 为获得某单塔双索面斜拉桥换索过程中的工作状态,建立了一种联合子结构与径向基神经网络的有限元模型修正新方法。根据模型参数修正理论,通过分析设计参数的相对灵敏度确定需要修正的参数; 为满足参数离散性要求,在模型修正过程中引入了子结构方法,并认为每一子结构中的设计参数是不变的。采用径向基( RBF) 神经网络作为模型修正优化算法。将子结构与 RBF 神经网络相结合,从而将有限元模型修正的反问题转化为正问题; 同时,对子结构的划分、RBF 神经网络构建以及输入输出参数的确定进行了讨论。以某单塔斜拉桥为例,验证了所提的联合模型修正方法。结果表明: 计算值与测量值之间的误差,在有限元模型修正前后有很大改善。

关键词: 有限元模型修正, 径向基神经网络, 单塔斜拉桥, 子结构, 相对灵敏度

CLC Number: