Periodic Solution for a Class of Non-Autonomous Second Order Systems
JIA Hong-en1, LIU Xi-lan2
1. School of Scienees, Xi'an Jiaotong University, Shanxi Xi'an 710049, China; 2. Department of Mathematics, Shanxi Datong University, Shanxi Datong 037009, China
JIA Hong-en, LIU Xi-lan. Periodic Solution for a Class of Non-Autonomous Second Order Systems[J]. Journal of Chongqing Jiaotong University(Natural Science), 2009, 28(2): 330-332.
[1] Mawh in JW.Critical point theory and Hamiltonian systems [M].New York:Springer Verlag,1989.
[2] Tang C L.Periodic solutions of nonautonomous second
order systems [J].J.Math.Ana.l App.l ,1996,202( 2):
465-469.
[3] Tang C L.Periodic solutions of nonautonomous second
order systems with sublinear nonlinearity [J].Proc.Amer.Math.Soc.,1998,126 ( 11):3263-3270.
[4] Tang C L.Periodic solutions of nonautonomous second order systems with quasisubadditive potential[J].J.M ath.Ana.l App.l ,1995,189( 3):671-675.
[5] Wu X P,Tang C L.Periodic solutions of nonautonomous
second order systems with subconvex potential [J].Xinan
Normal University ( ZiRan Ke Xue Ban),1995,20( 5):
348-351.
[6] Rabinowitz PH.On a class of functions invariant under a
action [J].Trans.Amer.Math.Soc.,1988,10( 1):303
-311.
[7] Haof K,Wu X.Periodic solutions of nonautonomous
second order systems [J].J.Math.Ana.l App.l ,2004
( 296):422-434.
[8] Zeidler E.Nonlinear Functional Analysis and Its Applications( Vo.l 1) [M].New York:Springe r,1985.