
Journal of Chongqing Jiaotong University(Natural Science) ›› 2022, Vol. 41 ›› Issue (09): 9-17.DOI: 10.3969/j.issn.1674-0696.2022.09.02
• Transportation+Big Data & Artificial Intelligence • Previous Articles Next Articles
LAN Zhangli, WANG Chao, YANG Qingqing, JIN Hao
Received:2021-06-28
Revised:2021-08-19
Published:2022-09-30
蓝章礼,王超,杨晴晴,金豪
作者简介:蓝章礼(1973—),男,重庆人,教授,博士,主要从事图像处理、交通信息化的研究。E-mail: lzl7309@126.com
通信作者:王超(1997—),男,重庆人,硕士研究生,主要从事图像处理与机器视觉的研究。E-mail: w_allen@mails.cqjtu.edu.cn
基金资助:CLC Number:
LAN Zhangli, WANG Chao, YANG Qingqing, JIN Hao. Vehicle Re-identification Algorithm Based on Multi-granularity Feature Segmentation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 9-17.
蓝章礼,王超,杨晴晴,金豪. 基于多粒度特征分割的车辆重识别算法[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 9-17.
Add to citation manager EndNote|Ris|BibTeX
URL: http://xbzk.cqjtu.edu.cn/EN/10.3969/j.issn.1674-0696.2022.09.02
| [1] 刘凯,李浥东,林伟鹏.车辆再识别技术综述[J].智能科学与技术学报,2020,2(1):10-25. LIU Kai, LI Yidong, LIN Weipeng. A survey on vehicle reidenti-fication[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2 (1): 10-25. [2] LIU X, LIU W, MA H. Large-scale vehicle re-identification in urban surveillance videos [C]∥The 2016 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE Press, 2016: 1-6. [3] ZAPLETAL D, HEROUT A. Vehicle re-identification for automatic video traffic surveillance [C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]:[s.n.], 2016: 1568-1574. [4] LIU H, TIAN Y, WANG Y, et al. Deep relative distance learning: Tell the difference between similar vehicles [C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]:[s.n.], 2016: 2167-2175. [5] BAI Y, LOU Y, GAO F, et al. Group-sensitive triplet embedding for vehicle reidentification [J]. IEEE Transactions on Multimedia, 2018, 20(9): 2385-2399. [6] PENG J, WANG H, ZHAO T, et al. Learning multi-region features for vehicle re-identification with context-based ranking method [J]. Neurocomputing, 2019, 359(24): 427-437. [7] CHEN H, LAGADEC B, BREMOND F. Partition and reunion: A two-branch neural network for vehicle re-identification [C]∥CVPR Workshops. Long Beach: IEEE, 2019: 184-192. [8] QIAN J, JIANG W, LUO H, et al. Stripe-based and attribute-aware network: A two-branch deep model for vehicle re-identification [J]. Measurement Science and Technology, 2020, 31(9): 1-11. [9] WANG H, PENG J, JIANG G, et al. Discriminative feature and dictionary learning with part-aware model for vehicle re-identification [J]. Neurocomputing, 2020: arXiv:2003.07139. [10] SUPREM A, PU C. Looking GLAMORous: Vehicle re-id in hetero-geneous cameras networks with global and local attention[J/OL]. (2020-02-06)[2021-06-28]. https:∥doi.org/10.48550/arXiv.2002.02256. [11] YANG J, XING D, HU Z, et al. A two-branch network with pyramid-based local and spatial attention global feature learning for vehicle re-identification [J]. CAAI Transactions on Intelligence Technology, 2021, 6(1): 46-54. [12] MENG D, LI L, LIU X, et al. Parsing-based view-aware embedding network for vehicle re-identification [C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]:[s.n.], 2020: 7103-7112. [13] ZHANG H, WU C, ZHANG Z, et al. Resnest: Split-attention networks[J/OL]. (2020-12-30)[2021-06-28].https:∥doi.org/10.48550/arXiv.2004.08955. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]:IEEE, 2016: 770-778. [15] 杨红,韩鹏,刘畅,等.基于多任务学习的船舶行为识别与轨迹预测[J].重庆交通大学学报(自然科学版),2022,41(4):1-7. YANG Hong, HAN Peng, LIU Chang, et al. Vessel behavior recogni-tion and trajectory prediction based on multi-task learning model [J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41 (4): 1-7. [16] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [C]∥Proceedings of the European Conference on Computer Vision. [S.l.]:[s.n.], 2018: 3-19. [17] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J/OL]. (2017-05-17)[2021-06-28]. https:∥doi.org/10.48550 /arXiv.1703.07737. [18] LIU X, LIU W, MEI T, et al. Provid: Progressive and multimodal vehicle reidentification for large-scale urban surveillance [J]. IEEE Transactions on Multimedia, 2017, 20(3): 645-658. [19] LIU H, TIAN Y, YANG Y, et al. Deep relative distance learning: Tell the difference between similar vehicles [C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]:[s.n.], 2016: 2167-2175. [20] ZHENG A, LIN X, LI C, et al. Attributes guided feature learning for vehicle re-identification[J/OL]. (2019-05-22)[2021-06-28]. https:∥doi.org/10.48550/ arXiv.1905.08997. |
| [1] | HAN Baorui, PU Haijian, ZHU Zhenjun. Evolution of the Competition-Cooperation Relationship between Urban Rail Transit and Conventional Bus Based on the Improved Lotka-Volterra Model [J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(2): 106-112. |
| [2] | HE Lieyun, ZHOU Yan, HUANG Shaoze, LIU Qiang. Application Condition and Benefit Evaluation of Signal Control Mode for Superposition Release [J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(1): 113-119. |
| [3] | LI Zhenlong, DONG Aihua, YANG Lei. Evaluation of Lane Change Trajectory Based on Group Decision and Entropy Weight Method [J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(1): 120-127. |
| [4] | ZHAO Xin, FENG Lei, LIN Haobo, , CHEN Xi, XIAO Yuzhou. Green Wave Control Method of Non-straight Path at Adjacent T-shaped Intersection [J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 16-23. |
| [5] | ZHANG Zhiyong, HUANG Xincan, SHAO Yue. Setting Threshold of Right-Turn Protective Phase under the Condition of Comity to Pedestrians [J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 24-33. |
| [6] | FENG Tianjun, YANG Xiayu, XIA Chunting, LIANG Chunyan, LI Henan. Driving Safety Distance of Urban Road in Cold Regions Based on Separation Facilities [J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 34-38. |
| [7] | PAN Yiyong, WU Jingting, SHI Ying. Injury Severity Analysis of the Elderly in Collision Accidents at Intersections [J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 39-44. |
| [8] | LYU Zhen, QI Chunhua, ZHU Shoulin. Drivers Dynamic Visual Characteristics in Different Distraction States on Prairie Highways [J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 45-52. |
| [9] | ZHANG Lingyu, WANG Li, ZHANG Lili, ZHANG Xiao, SUN Dehui. Research Progress and Prospect of Switching Human-Machine Driving of Intelligent Vehicle [J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(09): 130-139. |
| [10] | ZHAO Shuen, LIU Wei. Low-Illumination Road Traffic Sign Recognition Based on Improved VGG Model [J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(10): 178-184. |
| [11] | LI Yingshuai1, YAN Qiruo1, ZHAO Cong2. Range of Inner Wheel Deviation Effect in Right Turn of Buse [J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(09): 43-48. |
| [12] | YAN Ying1, LIU Ge1, TIAN Min1, LIU Jiale1, MU Yan2. Method for Determining Critical Speed of Curve-Slope Combination Section Based on Trucksim [J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(09): 49-54. |
| [13] | HU Mingwei1,2,3, SHI Xiaolong1, ZHAI Suyun4, LIU Peng1. Evaluation of Traffic and Environmental Benefits for the Mixed Traffic Flow of Autonomous Vehicles [J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(08): 7-14. |
| [14] | LI Jia1, WANG Xuesong2. Meso-level Safety Analysis Model of Urban Arterials in Dense Road Network [J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(08): 34-41. |
| [15] | JIAO Liudan1, ZHU Yinghan1, WU Ya2, SONG Xiangnan3. Pricing of Urban Rail Transit Peak Fare Based on Evolutionary Game Theory [J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(08): 42-49. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||