中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2023, Vol. 42 ›› Issue (5): 25-34.DOI: 10.3969/j.issn.1674-0696.2023.05.04

• Transportation+Big Data & Artificial Intelligence • Previous Articles    

Combined Prediction Model of Bridge Deformation Response Based on EEMD-LSTM

MENG Qingcheng1, LI Mingjian1, HU Lei1, WAN Da1, WU Haojie1, QI Xin2   

  1. (1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, Sichuan, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Received:2022-03-07 Revised:2022-05-19 Published:2023-07-13

基于EEMD-LSTM的桥梁变形响应组合预测模型研究

孟庆成1,李明健1,胡垒1,万达1,吴浩杰1,齐欣2   

  1. (1. 西南石油大学 土木工程与测绘学院,四川 成都 610500; 2. 西南交通大学 土木工程学院,四川 成都 610031)
  • 作者简介:孟庆成(1980—),男,四川成都人,讲师,博士,主要从事桥梁结构健康监测与损伤识别方面的研究。E-mail:214400395@qq.com 通信作者:李明健(1998—),男,海南洋浦人,硕士研究生,主要从事桥梁工程方面的研究。E-mail:1016253978@qq.com
  • 基金资助:
    国家自然科学基金项目(52078442,51408498);四川省科技计划项目(2021YJ0038);四川省教育厅自然科学重点项目(16ZA0058)

Abstract: In order to accurately predict the deformation response of bridge structure, an EEMD-LSTM combined model was proposed, in which the iForest algorithm was used to denoise the original deformation data of the bridge, the Ensemble Empirical Mode Decomposition (EEMD) method was used to decompose the bridge deformation data, and the Long Short-Term Memory (LSTM) deep learning method was used to predict the obtained multi-scale deformation components. Taking Wuhan Zhuankou Yangtze River Bridge as the research object, RMSE, MAE, MAPE and R2 were selected as evaluation indexes to verify the proposed model. The research results show that compared with the single LSTM, SVM and Bayesian model, the EEMD-LSTM model has good robustness, applicability, and higher prediction accuracy.

Key words: bridge engineering; deep learning; iForest algorithm; EEMD-LSTM; deformation response

摘要: 为准确预测桥梁结构变形响应,提出了一种利用孤立森林(iForest)算法对桥梁原始变形数据进行降噪,集合经验模态分解法(EEMD)对桥梁变形数据进行分解,长短期记忆神经网络(LSTM)深度学习法对所得到的多尺度变形分量进行预测的EEMD-LSTM组合模型。以武汉沌口长江大桥作为研究对象,选取RMSE、MAE、MAPE和R2等参数作为评价指标,对该模型进行了验证。研究结果表明:与单一的LSTM、SVM和Bayesian模型相比,EEMD-LSTM模型有着良好的鲁棒性、适用性和更高的预测精度。

关键词: 桥梁工程;深度学习;孤立森林算法;EEMD-LSTM;变形响应

CLC Number: