[1] 梁宗保,柴洁,纳守勇,等.基于深度学习的桥梁健康监测数据有效性分析[J].重庆交通大学学报(自然科学版),2021,40(3):78-83.
LIANG Zongbao, CHAI Jie, NA Shouyong, et al. Validity analysis of bridge health monitoring data based on deep learning [J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(3): 78-83.
[2] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J].中国公路学报,2021,34(2):1-97.
Editorial Department of China Journal of Highway and Transport. Review on Chinas bridge engineering research: 2021 [J]. China Journal of Highway and Transport, 2021, 34(2): 1-97.
[3] 陈国良,林训根,岳青,等.基于时间序列分析的桥梁长期挠度分离与预测[J].同济大学学报(自然科学版),2016,44(6):962-968.
CHEN Guoliang, LIN Xungen, YUE Qing, et al. Study on separation and forecast of long-term deflection based on time series analysis [J]. Journal of Tongji University (Natural Science), 2016, 44(6): 962-968.
[4] 郑栋,黄劲松,李典庆.基于多源信息融合的路堤沉降预测方法[J].岩土力学,2019,40(2):709-719.
ZHENG Dong, HUANG Jinsong, LI Dianqing. An approach for predict-ing embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[5] WANG Xudong, MIAO Changqing, WANG Xiaoming. Prediction analysis of deflection in the construction of composite box-girder bridge with corrugated steel webs based on MEC-BP neural networks [J]. Structures, 2021, 32(3): 691-700.
[6] 吴杰,余腾,郭冰,等.小波神经网络在桥梁变形预测中的应用[J].测绘科学,2017,42(11):74-79.
WU Jie, YU Teng, GUO Bing, et al. The application of wavelet neural network in the bridge deformation prediction [J]. Science of Surveying and Mapping, 2017, 42(11): 74-79.
[7] 栾元重,梁耀东,董岳,等.桥梁水平位移混沌特征识别与神经网络预测研究[J].大地测量与地球动力学,2021,41(1):7-11.
LUAN Yuanzhong, LIANG Yaodong, DONG Yue, et al. Chaotic characteristics recognition and neural network prediction of bridge horizontal displacement analysis [J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 7-11.
[8] WANG Hao, ZHANG Yiming, MAO Jianxiao, et al. Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model [J]. Engineering Structures, 2019, 192(1): 220-232.
[9] 田壮,樊启武,王昌杰.深度学习在桥梁响应预测与健康监测中的应用[J].铁道工程学报,2021,38(6):47-52.
TIAN Zhuang, FAN Qiqu, WANG Changjie. Application of deep learning in bridge structure response prediction and health monitoring system [J]. Journal of Railway Engineering Society, 2021, 38(6): 47-52.
[10] 杨背背,殷坤龙,杜娟.基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J].岩石力学与工程学报,2018,37(10):2334-2343.
YANG Beibei, YIN Kunlomg, DU Juan. A model for predicting landslide displacement based on time series and long and short-term memory neural network [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2334-2343.
[11] YAO Wei, ZENG Zhigang, LIAN Cheng, et al. Training enhanced reservoir computing predictor for landslide displacement [J]. Engineering Geology, 2015, 188: 101-109.
[12] 宗周红,钟儒勉,郑沛娟,等.基于健康监测的桥梁结构损伤预后和安全预后研究进展及挑战[J].中国公路学报,2014,27(12):46-57.
ZONG Zhouhong, ZHONG Rumian, ZHENG Peijuan, et al. Damage and safety prognosis of bridge structures based on structural health monitoring: Progress and challenges [J]. China Journal of Highway and Transport, 2014, 27(12): 46-57.
[13] 黄国斌,谭兴龙.GPS动态观测中的信号滤波方法研究[J].重庆交通大学学报(自然科学版),2019,38(9):39-44.
HUANG Guobin, TAN Xinglong. Research on signal filtering method in GPS dynamic observation [J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(9): 39-44.
[14] 徐健,周志祥,赵丽娜,等.基于AEEMD和改进DATA-SSI算法的桥梁结构模态参数自动化识别[J].土木工程学报,2017,50(7):87-98.
XU Jian, ZHOU Zhixiang, ZHAO Lina, et al. Automatic identification of modal parameter for bridges based on AEEMD and improved DATA-SSI [J]. China Civil Engineering Journal, 2017, 50(7): 87-98.
[15] 李洛宾,龚晓南,甘晓露,等.基于循环神经网络的盾构隧道引发地面最大沉降预测[J].土木工程学报,2020,53(增刊1):13-19.
LI Luobin, GONG Xiaonan, GAN Xiaolu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network [J]. China Civil Engineering Journal, 2020, 53(Sup1): 13-19.
[16] PASCUAL S, BONAFONTE A. Multi-output RNN-LSTM for multiple speaker speech Synthesis with α-interpolation model [C]∥9th ISCA Speech Synthesis Workshop. Sunnyvalc, USA, 2016.
[17] 翁小雄,郝翊.基于LSTM引入客车占比特征的短时交通流预测[J].重庆交通大学学报(自然科学版),2020,39(11):20-25.
WENG Xiaoxiong, HAO Yi. Short-term traffic flow prediction based on LSTM algorithm with the characteristics of passenger car proportion [J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(11): 20-25.
[18] 冯鹏程,丁仁军,陈毅明,等.沌口长江公路大桥主桥设计[J].桥梁建设,2017,47(4):1-6.
FENG Pengcheng, DING Renjun, CHEN Yiming, et al. Design of main bridge of Zhuankou Changjiang river highway bridge [J]. Bridge Construction, 2017, 47(4): 1-6.
[19] 王泓晖,房鑫,李德江,等.基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J].浙江大学学报(工学版),2021,55(2):280-288.
WANG Honghui, FANG Xin, LI Dejiang, et al. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network [J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 280-288.
[20] 徐丛,王少伟,刘毅,等.考虑黏弹性滞后效应的拱坝位移监控组合模型[J].长江科学院院报,2022,39(3):67-72.
XU Cong, WANG Shaowei, LIU Yi, et al. Combined monitoring model for displacement of arch dams considering viscoelastic hysteretic effect [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(3): 67-72. |