中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2023, Vol. 42 ›› Issue (6): 138-145.DOI: 10.3969/j.issn.1674-0696.2023.06.18

• Transportation Infrastructure Engineering • Previous Articles    

Approach Sequencing of PMS Under Uncertain Conditions

WANG Lili, XIONG Zirui   

  1. (College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China)
  • Received:2022-03-07 Revised:2022-09-21 Published:2023-08-01

不确定条件下点融合系统进场排序研究

王莉莉,熊子睿   

  1. (中国民航大学 空中交通管理学院,天津 300300)
  • 作者简介:王莉莉(1973—),女,陕西兴平人,教授,博士,主要从事空中交通管理方面的研究。E-mail:llwang@cauc.edu.cn 通信作者:熊子睿(1997—),女,安徽合肥人,硕士研究生,主要从事空中交通管理方面的研究。E-mail:161544229@cauc.edu.cn
  • 基金资助:
    国家自然科学基金委员会-中国民用航空局民航联合研究基金项目(U1633124)

Abstract: Aiming at the problem of flight delay propagation caused by the uncertainty of the passing time of the aircraft during the approach, in order to improve the robustness and practicability of the sequencing scheme in actual operation, the static and dynamic sequencing models under uncertain conditions were established based on the point merge system (PMS), respectively, which could hedge the influence of uncertainty. The static sequencing model aimed to minimize the delay time and the maximum flight time of the sequencing side and was optimized by using the improved NSGA-II algorithm combined with random chance constraints. The dynamic sequencing model aimed to minimize the total flight time, and the initial scheme was optimized by heuristic algorithm based on sliding time window. The delay time of the sequencing side of the static and dynamic sequencing models with additional buffers is reduced by 38.8% and 20.8% respectively, compared with the traditional methods. Under the buffer time of 37.5 seconds, the total flight time, the delay time of sequencing side and the maximum flight time of the static sequencing model are reduced by 4%, 19.9% and 7.1% respectively, compared with the dynamic sequencing model. The delay propagation of merge point can be effectively alleviated by losing less operational efficiency. Among them, the static sequencing model changes more in aircraft sequence than the dynamic sequencing model does, and the robust performance of the dynamic sequencing model is better.

Key words: air transportation engineering; air traffic flow management; aircraft sequencing optimization; point merge system; uncertainty

摘要: 针对进场过程中航空器过点时间不确定导致延误传播的问题,为提升排序方案在实际运行中的鲁棒性和实用性,基于点融合系统分别建立了可对冲不确定性影响的静态和动态排序模型。静态排序模型以排序边延误时间最小和最大飞行时间最小为目标,采用结合了随机机会约束的改进NSGA-II算法进行优化;动态排序模型以最小化总飞行时间为目标,采用基于滑动时间窗的启发式算法对初始方案进行优化。仿真结果显示:具有额外缓冲区的静态和动态排序模型的排序边延误时间相比于传统方法分别降低了38.8%、 20.8%;在37.5 s的缓冲时间下,静态排序模型的总飞行时间、排序边延误时间、最大飞行时间相比动态排序模型分别降低了4%、 19.9%、 7.1%。通过损失较少的运行效率能够有效地缓解汇聚航路点的延误传播;其中,静态排序模型相比动态排序模型航空器序列改变量更多,动态排序模型的鲁棒性能更好。

关键词: 航空运输工程;空中交通流量管理;航空器优化排序;点融合系统;不确定性

CLC Number: