[1] QIU Minghong, SHAO Xudong, WILLE K, et al. Experimental investigation on flexural behavior of reinforced ultra-high performance concrete low-profile T-beams[J]. International Journal of Concrete Structures and Materials, 2020, 14(1): 1-20.
[2] YANG K H, MUN J H, HWANG S H, et al. Flexural capacity and ductility of lightweight concrete T-beams[J]. Structural Concrete, 2020, 21(6): 2708-2721.
[3] LI Aijun, YANG Zijiang, LIU Shizhong, et al. Experimental study on flexural fatigue behavior of composite T-beams in ultra-high performance concrete reinforced and normal-strength concrete[J]. International Journal of Fatigue, 2023, 167: 107330.
[4] NATH P, SARKER P K. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature[J]. Cement and Concrete Composites, 2015, 55: 205-214.
[5] ASSI L N, DEAVER E, ELBATANOUNY M K, et al. Investigation of early compressive strength of fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2016, 112: 807-815.
[6] KONG D L Y, SANJAYAN J G, SAGOE-CRENTSIL K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures[J]. Cement and Concrete Research, 2007, 37(12): 1583-1589.
[7] THOKCHOM S, MANDAL KK, GHOSH S. Effect of Si/Al ratio on performance of fly ash geopolymers at elevated temperature[J]. Arabian Journal for Science and Engineering, 2012, 37(4): 977-989.
[8] LIU Yiwei, SHI Caijun, ZHANG Zuhua, et al. An overview on the reuse of waste glasses in alkali-activated materials[J]. Resources, Conservation and Recycling, 2019, 144: 297-309.
[9] GE Xiaonan, HU Xiang, SHI Caijun. Impact of micro characteristics on the formation of high-strength class F fly ash-based geopolymers cured at ambient conditions[J]. Construction and Building Materials, 2022, 352: 129074.
[10] LI Ning, FARZADNIA N, SHI Caijun. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J]. Cement and Concrete Research, 2017, 100: 214-226.
[11] ZHANG Jian, SHI Caijun, ZHANG Zuhua, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies[J]. Construction and Building Materials, 2017, 152: 598-613.
[12] CHEYAD S M, HILO A N, AL-GASHAM T S. Comparing the abrasion resistance of conventional concrete and geopolymer samples[J]. Materials Today: Proceedings, 2022, 56: 1832-1839.
[13] FU Yawei, CAI Liangcai, WU Yonggen. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction and Building Materials, 2011, 25(7): 3144-3148.
[14] ZHANG Baifa, FENG Yuan, XIE Jianhe, et al. Rubberized geopolymer concrete: Dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber[J]. Construction and Building Materials, 2021, 310: 125248.
[15] HU Xiang, SHI Caijun, ZHANG Zuhua, et al. Autogenous and drying shrinkage of alkali-activated slag mortars[J]. Journal of the American Ceramic Society, 2019, 102(8): 4963-4975.
[16] WU Cheng, HWANG H J, SHICaijun, et al. Shear tests on reinforced slag-based geopolymer concrete beams with transverse reinforcement[J]. Engineering Structures, 2020, 219: 110966.
[17] LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209.
[18] MADHESWARAN C K, AMBILY P S, LAKSHMANAN N, et al. Shear behavior of reinforced geopolymer concrete thin-webbed T-beams[J]. ACI Materials Journal, 2014, 111(1): 89-97.
[19] 戚家南,王景全.考虑翼缘影响的钢筋混凝土T梁抗剪承载力[J].东南大学学报(自然科学版),2019,49(4):638-644.
QI Jianan, WANG Jingquan. Shear strength of reinforced concrete T-beams considering the effect of flange[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(4): 638-644.
[20] KOTSOVOS M D, BOBROWSKI J, EIBL J. Behavior of reinforced concrete T-beams in shear[J]. Structural Engineer Part B: R&D Quarterly, 1987, 65B(1): 1-10.
[21] ZARARIS I P, KARAVEZIROGLOU M K, ZARARIS P D. Shear strength of reinforced concrete T-beams[J]. ACI Structural Journal, 2006, 103(5): 693-700.
[22] THAMRIN R, TANJUNG J, ARYANTI R, et al. Shear strength of reinforced concrete T-beams without stirrups[J]. Journal of Engineering Science and Technology, 2016, 11(4): 548-562.
[23] 易伟建.混凝土结构试验与理论研究[M].北京:科学出版社,2012:309-310.
YI Weijian. Experimental and Theoretical Research on Concrete Structure[M]. Beijing: Science Press, 2012: 309-310.
[24] KOTSOVOS M D. Shear failure of reinforced concrete beams[J]. Engineering Structures, 1987, 9(1): 32-38.
[25] GIACCIO C, AL-MAHAIDI R, TAPLIN G. Experimental study on the effect of flange geometry on the shear strength of reinforced concrete T-beams subjected to concentrated loads[J]. Canadian Journal of Civil Engineering, 2002, 29(6): 911-918.
[26] 中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国建筑工业出版社, 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China. Metallic Materials-Tensile Testing-Part 1: Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Construction Industry Press, 2010.
[27] DING Yao, DAI Jianguo, SHI Caijun. Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar[J]. Construction and Building Materials, 2018, 165: 310-320.
[28] MAO Yuguang, HWANG H J, DU Yunxing, et al. Bond and anchorage performance of beam flexural bars in beam-column joints using slag-based geopolymer concrete and their effect on seismic performance[J]. Engineering Structures, 2022, 273: 115062.
[29] 李艳艳.配置500 MPa钢筋的混凝土梁受力性能的试验研究[D].天津:天津大学,2008:29-89.
LI Yanyan. Experimental Research on Behaviors of Reinforced Concrete Beams with 500 MPa Steel Bars[D]. Tianjin: Tianjin University, 2008: 29-89.
[30] 毛宇光,刘钰中,杜运兴,等.梁纵筋黏结状况对矿渣地聚物混凝土梁柱中节点抗震性能的影响[J].重庆交通大学学报(自然科学版),2022,41(11):89-98.
MAO Yuguang, LIU Yuzhong, DU Yunxing, et al. Effect of bond condition of beam longitudinal bars on seismic performance of slag geopolymer concrete beam-column joints[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(11): 89-98.
[31] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the Peoples Republic of China. Standard for Test Method of Concrete Structures: GB/T 50152—2012[S]. Beijing: China Construction Industry Press, 2012.
[32] MAO Yuguang, DU Yunxing, HWANG H J, et al. Seismic perfor-mance of interior beam-column joints using reinforced slag-based geopo-lymer concrete[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(2): 285-307.
[33] 张军锋,朱冰,李杰,等.计算模型对简支箱梁和T梁剪力滞结果影响[J].重庆交通大学学报(自然科学版),2019,38(2):7-12.
ZHANG Junfeng, ZHU Bing, LI Jie, et al. Influence of calculation model on shear lag results of simple-supported box and T beam[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(2): 7-12.
[34] 秦绪喜,刘寒冰.均布与线性荷载下简支T梁剪力滞系数的圣维南解[J].工程力学,2009,26(10):135-139.
QIN Xuxi, LIU Hanbing. Saint-venant solution for shear lag factors of simply supported T beam under uniform or linear load[J]. Engineering Mechanics, 2009, 26(10): 135-139.
[35] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the Peoples Republic of China. Code for Design of Concrete Structures: GB 50010—2010 [S]. Beijing: China Construction Industry Press, 2010.
[36] ACI Committee 318. Building Code Requirements for Structural Con-crete: ACI 318—19[S]. Farmington Hills, MI, USA: American Concrete Institute, 2019.
[37] European Committee for Standardization. Eurocode 2: Design of Concrete Structures. Part 1: General Rules and Rules for Buildings[S]. London: British Standards Institution, 2010. |