中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2024, Vol. 43 ›› Issue (7): 44-51.DOI: 10.3969/j.issn.1674-0696.2024.07.06

• Transportation+Big Data & Artificial Intelligence • Previous Articles    

A Quantitative Model of the Alertness Level on Mountain Roads Considering Human and Environmental Factors

LIU Tong1, HU Hong1, SHAN Jue2, LIU Tangzhi1, LIU Xingliang1   

  1. (1. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. Design Institute Branch, Zhejiang Jiaogong Group Co., Ltd., Hangzhou 310051, Zhejiang, China)
  • Received:2023-08-23 Revised:2023-11-09 Published:2024-07-17

考虑人因-环境因素的山区公路警觉水平量化模型

刘通1,胡红1,单珏2,刘唐志1,刘星良1   

  1. (1. 重庆交通大学 交通运输学院,重庆 400064; 2. 浙江交工集团股份有限公司设计院分公司,浙江 杭州 310051)
  • 作者简介:刘通(1989—),男,山西怀仁人,讲师,博士,主要从事交通安全与信息化方面的研究。E-mail:liutong@cqjtu.edu.cn 通信作者:单珏(1997—),女,江苏东台人,硕士研究生,主要从事交通安全与信息化方面的研究。E-mail:shanj97@163.com
  • 基金资助:
    国家自然科学基金项目(52172341);重庆市自然科学基金项目(CSTB2022NSCQ-MSX0519);重庆市英才计划技术创新与应用发展项目(CQYC2020030283);重庆市教委科研项目(KJQN202100719)

Abstract: In order to describe the alertness state and level of highway drivers on mountain roads, a quantitative method for the alertness level on mountainous roads was proposed by comprehensively considering human and environmental factors. The initial observation indicators were determined by analyzing the drivers eye movement and behavior data, the dimensionality of multi-source data was reduced based on the kernel principal component analysis method, and the reduced principal components were classified into high and low alertness levels by using K-means clustering method. Taking the probability of low alertness level samples as the target variable, the alertness level quantitative factors were obtained by screening human and environmental factors. Based on the score card method, the quantitative model of the alertness level on mountain roads was established, which was verified through practical examples. The research results show that the AUC value and KS value of the quantitative model for the alertness level on mountainous roads considering human and environmental factors are 0.907 and 71.86%, respectively. The proposed model has good performance and can provide reference for the dynamic evaluation of alertness level of drivers on mountainous roads and the construction of safety supporting facilities.

Key words: traffic engineering; alertness level; mountain roads; score card model; real vehicle test; kernel principal component analysis

摘要: 为描述山区公路驾驶者的警觉状态及水平,综合考虑人因-环境因素,提出了一种山区公路警觉水平量化方法。通过分析驾驶者的眼动及行为数据来确定初始观测指标,基于核主成分分析法对多源数据进行降维,对降维后的主成分使用K-means聚类方法划分高低警觉水平;以低警觉水平样本概率为目标变量,通过筛选人因-环境因素得到了警觉水平量化因子;基于评分卡方法建立了山区公路警觉水平量化模型,并对模型进行了实例验证。研究结果表明:基于人因-环境因素的山区公路警觉水平量化模型的AUC值为0.907,KS值为71.86%,模型效果较好,能为山区公路驾驶者警觉水平动态评价及安全配套设施建设提供参考依据。

关键词: 交通工程;警觉水平;山区公路;评分卡模型;实车试验;核主成分分析

CLC Number: