[1] XIONG Xiaoyong, MIN Haitao, YU Yuanbin, et al. Application improvement of A* algorithm in intelligent vehicle trajectory planning[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 1-21.
[2] LI Yongyi, YANG Wei, ZHANG Xiaorui, et al. Research on automatic driving trajectory planning and tracking control based on improvement of the artificial potential field method[J]. Sustainability, 2022, 14(19): 12131.
[3] YU Lingli, SHAO Xuanya, WEI Yadong, et al. Intelligent land-vehicle model transfer trajectory planning method based on deep reinforcement learning[J]. Sensors, 2018, 18(9): 2905.
[4] KOU Yukang, MA Changxi. Dual-objective intelligent vehicle lane changing trajectory planning based on polynomial optimization[J]. Physica A Statistical Mechanics and Its Applications, 2023, 617: 128665.
[5] LI Yang, LI Linbo, NI Daiheng. Dynamic trajectory planning for automated lane changing using the quintic polynomial curve[J]. Journal of Advanced Transportation, 2023, 2023: 6926304.
[6] YUE Ming, HOU Xiaoqiang, ZHAO Xudong, et al. Robust tube-based model predictive control for lane change maneuver of tractor-trailer vehicles based on a polynomial trajectory[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5180-5188.
[7] WANG Ying, WEI Chong, LI Shurong. QPNet: Lane-changing trajectory planning combining quadratic programming and neural network under the convex optimization framework[J]. IET Intelligent Transport Systems, 2022, 16(11): 1578-1599.
[8] NIE Zifei, FARZANEH H. Energy-efficient lane-change motion planning for personalized autonomous driving[J]. Applied Energy, 2023, 338: 120926.
[9] ZHAO Hongzhuan, WU Hao, LU Ningning, et al. Lane changing in a vehicle-to-everything environment: Research on a vehicle lane-changing model in the tunnel area by considering the influence of brightness and noise under a vehicle-to-everything environment[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 225-237.
[10] 金智林, 何少炜, 黄舒伟. 融合侧翻稳定性的SUV换道轨迹规划方法研究[J]. 机械工程学报, 2023, 59(4): 145-154.
JIN Zhilin, HE Shaowei, HUANG Shuwei. Research on SUV lane changing trajectory planning method integrating rollover stability[J]. Journal of Mechanical Engineering, 2023, 59(4): 145-154.
[11] 周孝添, 任宏斌, 苏波, 等. 基于微分平坦的分层轨迹规划算法[J]. 兵工学报, 2023, 44(2): 394-405.
ZHOU Xiaotian, REN Hongbin, SU Bo, et al. Hierarchical trajectory planning algorithm based on differential flatness[J]. Acta Armamentarii, 2023, 44(2): 394-405.
[12] 赵树恩, 王金祥, 李玉玲. 基于多目标优化的智能车辆换道轨迹规划[J]. 交通运输工程学报, 2021, 21(2): 232-242.
ZHAO Shuen, WANG Jinxiang, LI Yuling. Lane changing trajectory planning of intelligent vehicle based on multiple objective optimization[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 232-242.
[13] 李林波, 李杨. 消减换道行为影响的换道轨迹规划[J]. 同济大学学报(自然科学版), 2022, 50(12): 1728-1733.
LI Linbo, LI Yang. Lane-changing trajectory planning considering mitigation of lanechanging impact on surroundings[J]. Journal of Tongji University (Natural Science), 2022, 50(12): 1728-1733.
[14] 闫茂德, 张钰瑶, 杨盼盼, 等. 基于多目标优化的智能网联汽车队列换道方法[J]. 计算机仿真, 2022, 39(3): 145-149.
YAN Maode, ZHANG Yuyao, YANG Panpan, et al. Lane change method of intelligent networked vehicle platoon based on multi-objective optimization[J]. Computer Simulation, 2022, 39(3): 145-149.
[15] SANGUESA J A, GARRIDO P, MARTINEZ F J, et al. Analyzing the impact of roadmap and vehicle features on electric vehicles energy consumption[J].IEEE Access, 2021, 9: 61475-61488.
[16] CHOPRA N,MOHSIN ANSARI M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198: 116924.
[17] ZHAO Weiguo, ZHANG Zhenxing, WANG Liying. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300. |