[1] 贺政纲, 黄娟. 基于FPSO灰色Verhulst模型的铁路货运量预测[J]. 铁道学报, 2018, 40(8): 1-8.
HE Zhenggang, HUANG Juan. Prediction of railway freight volumes based on FPSO grey Verhulst model[J]. Journal of the China Railway Society, 2018, 40(8): 1-8.
[2] 徐莉, 薛锋. 基于GM(1, 1)残差二次修正的铁路货运量预测[J]. 交通运输工程与信息学报, 2019, 17(2): 44-50.
XU Li, XUE Feng. Prediction of rail freight volume of China based on secondary residual error modification of GM(1, 1) model[J]. Journal of Transportation Engineering and Information, 2019, 17(2): 44-50.
[3] 丁天明, 潘宁, 杜柏松, 等. 基于改进灰色马尔可夫的港口货物吞吐量预测研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(9): 130-136.
DING Tianming, PAN Ning, DU Baisong, et al. Forecast of cargo throughput in port based on improved grey Markov[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(9): 130-136.
[4] 夏伟怀, 刘嘉莉, 冯芬玲. 基于随机森林的铁路冷藏运输需求预测[J]. 铁道科学与工程学报, 2022, 19(4): 909-916.
XIA Weihuai, LIU Jiali, FENG Fenling. Demand forecast of railway refrigerated transportation based on random forest[J]. Journal of Railway Science and Engineering, 2022, 19(4): 909-916.
[5] 谢新连, 王余宽, 许小卫, 等. 基于随机森林算法的港口集装箱吞吐量预测方法[J]. 重庆交通大学学报(自然科学版), 2022, 41(2): 15-20.
XIE Xinlian, WANG Yukuan, XU Xiaowei, et al. Port container throughput forecasting method based on random forest algorithm[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(2): 15-20.
[6] 谭雪, 张小强. 基于GRU深度网络的铁路短期货运量预测[J]. 铁道学报, 2020, 42(12): 28-35.
TAN Xue, ZHANG Xiaoqiang. GRU deep neural network based short-term railway freight demand forecasting[J]. Journal of the China Railway Society, 2020, 42(12): 28-35.
[7] 程肇兰, 张小强, 梁越. 基于LSTM网络的铁路货运量预测[J]. 铁道学报, 2020, 42(11): 15-21.
CHENG Zhaolan, ZHANG Xiaoqiang, LIANG Yue. Railway freight volume prediction based on LSTM network[J]. Journal of the China Railway Society, 2020, 42(11): 15-21.
[8] 徐玉萍, 邓俊翔, 蒋泽华. 基于组合预测模型的铁路货运量预测研究[J]. 铁道科学与工程学报, 2021, 18(1): 243-249.
XU Yuping, DENG Junxiang, JIANG Zehua. Railway freight volume forecasting based on a combined model[J]. Journal of Railway Science and Engineering, 2021, 18(1): 243-249.
[9] 张仙, 戴家佳, 余奇迪. 基于SARIMA-PSO-ELM组合模型的我国铁路货运量预测[J]. 数理统计与管理, 2022, 41(3): 394-401.
ZHANG Xian, DAI Jiajia, YU Qidi. Railway freight volume forecasting based on SARIMA-PSO-ELM combination model[J]. Journal of Applied Statistics and Management, 2022, 41(3): 394-401.
[10] 辜勇, 杨泽昭. 基于随机森林的集装箱多式联运货运量预测[J]. 武汉理工大学学报, 2023, 45(1): 35-44.
GU Yong, YANG Zezhao. Prediction of container multimodal transport freight volume based on random forest[J]. Journal of Wuhan University of Technology, 2023, 45(1): 35-44. |