[1] 李顺祥, 蒋海洋, 熊伶, 等. 基于STA-YOLOv5的水利建造人员安全帽佩戴检测算法[J]. 重庆大学学报, 2023, 46(9): 142-152.
LI Shunxiang, JIANG Haiyang, XIONG Ling, et al. Hydraulic construction personnel safety helmet wearing detection algorithm based on STA-YOLOv5[J]. Journal of Chongqing University, 2023, 46(9): 142-152.
[2] HUO Bihan, LI Chenglong, ZHANG Jianwei, et al. SAFF-SSD: Self-attention combined feature fusion-based SSD for small object detection in remote sensing[J]. Remote Sensing, 2023, 15(12): 3027.
[3] 郎磊, 刘宽, 王东. 基于YOLOX-Tiny的轻量级遥感图像目标检测模型[J]. 激光与光电子学进展, 2023, 60(2): 362-372.
LANG Lei, LIU Kuan, WANG Dong. Lightweight remote sensing object detector based on YOLOX-tiny[J]. Laser & Optoelectronics Progress, 2023, 60(2): 362-372.
[4] LI Dongjie, ZHANG Zilei, WANG Baogang, et al. Detection method of timber defects based on target detection algorithm[J]. Measurement, 2022, 203: 111937.
[5] 李亚东, 马行, 穆春阳, 等. 改进YOLOX网络的轴承缺陷小目标检测方法[J]. 计算机工程与应用, 2023, 59(1): 100-107.
LI Yadong, MA Xing, MU Chunyang, et al. Improved small target detection method of bearing defects in YOLOX network[J]. Computer Engineering and Applications, 2023, 59(1): 100-107.
[6] HAHNER M, SAKARIDIS C, DAI Dengxin, et al. Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021: 15263-15272.
[7] TAN R T. Visibility in bad weather from a single image[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
[8] LI Boyi, PENG Xiulian, WANG Zhangyang, et al. AOD-net: All-in-one dehazing network[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 4780-4788.
[9] CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
[10] ZHU Qingsong, MAI Jiaming, SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533.
[11] WANG Yongzhen, YAN Xuefeng, ZHANG Kaiwen, et al. TogetherNet: Bridging image restoration and object detection together via dynamic enhancement learning[J]. Computer Graphics Forum,2022, 41(7): 465-476.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 779-788.
[13] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao. Quad-FPN: A novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771.
[14] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. 32nd International Conference on Machine Learning, Lile, France,2015.
[15] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[16] GUO Qipeng, QIU Xipeng, XUE Xiangyang, et al. Low-rank and locality constrained self-attention for sequence modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(12): 2213-2222.
[17] LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. Improving convolutional networks with self-calibrated convolutions[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 10093-10102.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 2999-3007.
[19] ARYA D, MAEDA H, GHOSH S K, et al. RDD2020: An annotated image dataset for automatic road damage detection using deep learning[J]. Data in Brief, 2021, 36: 107133.
[20] LIU Wenyu, REN Gaofeng, YU Runsheng, et al. Image-adaptive YOLO for object detection in adverse weather conditions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(2): 1792-1800. |