[1] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[J]. 中国统计, 2024(3): 4-21.
National Bureau of Statistics. Statistical communiqué on national economic and social development of Peoples Republic of China (PRC) in 2023[J]. China Statistics, 2024(3): 4-21.
[2] 胡正云,仝秋红,刘帅. 自动驾驶车辆车道偏离识别及预警方法研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 118-125.
HU Zhengyun, TONG Qiuhong, LIU Shuai. Lane departure identification and early warning method for autonomous vehicle[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(10): 118-125.
[3] 何旭光, 江磊, 罗一平, 等. 基于Hough变换的车道线检测算法设计[J]. 农业装备与车辆工程, 2019, 57(11): 90-91.
HE Xuguang, JIANG Lei, LUO Yiping, et al. Design of lane detection algorithm based on Hough transform[J].Agricultural Equipment & Vehicle Engineering, 2019, 57(11): 90-91.
[4] 马泉钧, 何自超, 林邦演, 等. 基于图像处理的长距离车道线检测[J]. 河南科技, 2019, 38(29): 111-113.
MA Quanjun, HE Zichao, LIN Bangyan, et al. Long distance lane detection based on image processing[J].Henan Science and Technology, 2019, 38(29): 111-113.
[5] PAN Xingang, SHI Jianping, LUO Ping, et al. Spatial as deep: Spatial CNN for traffic scene understanding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1712.06080.
[6] 刘彬, 刘宏哲. 基于改进Enet网络的车道线检测算法[J]. 计算机科学, 2020, 47(4): 142-149.
LIU Bin, LIU Hongzhe. Lane detection algorithm based on improved Enet network[J]. Computer Science, 2020, 47(4): 142-149.
[7] QIN Zequn, WANG Huanyu, LI Xi. Ultra-fast structure-aware deep lane detection[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 276-291.
[8] TABELINI L, BERRIEL R, PAIXO T M, et al. Keep your eyes on the lane: Real-time attention-guided lane detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA. IEEE, 2021: 294-302.
[9] ZHANG Han, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[EB/OL]. 2018: 1805.08318.https://arxiv.org/abs/1805.08318v2.
[10] HOU Yuenan, MA Zheng, LIU Chunxiao, et al. Learning lightweight lane detection CNNs by self-attention distillation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea. IEEE, 2019: 1013-1021.
[11] NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: An instance segmentation approach[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China. IEEE, 2018: 286-291.
[12] 姜立标, 台啟龙. 基于实例分割方法的复杂场景下车道线检测[J]. 机械设计与制造工程, 2019, 48(5): 113-118.
JIANG Libiao, TAI Qilong. The lane line detection in complex scene based on instance segmentation[J]. Machine Design and Manufacturing Engineering, 2019, 48(5): 113-118.
[13] 邓超,马俊杰,严毅,等. 基于轻量级神经网络的车辆识别算法研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(4): 80-87.
DENG Chao, MA Junjie, YAN Yi, et al. Vehicle identification algorithms based on lightweight neural networks[J].Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(4): 80-87.
[14] 张冲, 黄影平, 郭志阳, 等. 基于语义分割的实时车道线检测方法[J]. 光电工程, 2022, 49(5): 26-37.
ZHANG Chong, HUANG Yingping, GUO Zhiyang, et al. Real-time lane detection method based on semantic segmentation[J]. Opto-Electronic Engineering, 2022, 49(5): 26-37.
[15] 罗鑫, 黄影平, 梁振明. 轴注意力引导的锚点分类车道线检测[J]. 光电工程, 2023, 50(7): 52-65.
LUO Xin, HUANG Yingping, LIANG Zhenming. Axial attention-guided anchor classification lane detection[J]. Opto-Electronic Engineering, 2023, 50(7): 52-65. |