[1] IJJINA E P, CHAND D, GUPTA S, et al. Computer vision-based accident detection in traffic surveillance[C]//2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2019: 1-6.
[2] CHEN Junyu, WU Pan, LI Jinlong, et al. More robust and better: Automatic traffic incident detection based on XGBoost[M]//Advances in Traffic Transportation and Civil Architecture. London: CRC Press, 2023: 267-274.
[3] 尹春娥, 陈宽民, 万继志. 基于小波方程的高速公路交通事故自动检测方法[J]. 中国公路学报, 2014, 27(12): 106-112.
YIN Chune, CHEN Kuanmin, WAN Jizhi. Automatic detection method for expressway traffic accidents based on wavelet equation[J]. China Journal of Highway and Transport, 2014, 27(12): 106-112.
[4] YUAN Fang, CHEU R L. Incident detection using support vector machines[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(3-4): 309-328.
[5] LIU Qingchao, LU Jian, CHEN Shuyan, et al. Multiple Nave Bayes classifiers ensemble for traffic incident detection[J]. Mathematical Problems in Engineering, 2014, 2014(1): 383671.
[6] JIANG Hui, DENG Hongxing. Traffic incident detection method based on factor analysis and weighted random forest[J]. IEEE Access, 2020, 8: 168394-168404.
[7] DOGRU N, SUBASI A. Traffic accident detection using random forest classifier[C]//2018 15th Learning and Technology Conference (L&T). IEEE, 2018: 40-45.
[8] LU Zhenbo, ZHOU Wei, ZHANG Shixiang, et al. A new video-based crash detection method: Balancing speed and accuracy using a feature fusion deep learning framework[J]. Journal of Advanced Transportation, 2020, 2020(1): 8848874.
[9] 施俊庆, 陈林武, 李素兰, 等. 基于CNN的城市道路交通事件检测算法[J]. 公路交通科技, 2022, 39(3): 176-182.
SHI Junqing, CHEN Linwu, LI Sulan, et al. Urban road traffic incident detection algorithm based on CNN[J]. Journal of Highway and Transportation Research and Development, 2022, 39(3): 176-182.
[10] 王晨, 周威, 严隽逸, 等. 一种用于道路交通事故自动检测的改进双流网络[J]. 中国公路学报, 2023, 36(5): 185-196.
WANG Chen, ZHOU Wei, YAN Junyi, et al. Improved two-stream network for vision-based traffic accident detection[J]. China Journal of Highway and Transport, 2023, 36(5): 185-196.
[11] LUO Weixin, LIU Wen, GAO Shenghua. Remembering history with convolutional LSTM for anomaly detection[C]//2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017: 439-444.
[12] SINGH D, MOHAN C K. Deep spatiotemporal representation for detection of road accidents using stacked autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 879-887.
[13] DOSHI K, YILMAZ Y. Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate[J].Pattern Recognition, 2021, 114: 107865.
[14] XU Yajun, HU Huan, HUANG Chuwen, et al. TAD: A large-scale benchmark for traffic accidents detection from video surveillance[J]. IEEE Access, 2024, 13: 2018-2033. |