[1] 郑鹏鹏, 任达勇, 江德冰. 拱桥斜拉扣挂及缆索吊装实时监测系统的工程运用[J]. 公路, 2019(9): 166-169.
ZHENG Pengpeng, REN Dayong, JIANG Debing. Application of real-time monitoring system erection and installation of pull buckle and cable for arch bridge[J].Highway, 2019(9): 166-169.
[2] 曹璐, 秦大燕, 马文辉, 等. 中承式提篮拱桥“过程最优,结果可控” 索力优化法研究[J]. 世界桥梁, 2022, 50(6): 52-58.
CAO Lu, QIN Dayan, MA Wenhui, et al. Research on applicability of fastening cable force optimization method based on principle of “optimal process and controllable results” in construction of half-through basket-handle arch bridge[J]. World Bridges, 2022, 50(6): 52-58.
[3] 张敏,许诺,周琳淇,等. 垫塞钢板对扣索力与主拱线形的影响分析[J]. 重庆交通大学学报(自然科学版), 2020, 39(6): 53-58.
ZHANG Min, XU Nuo, ZHOU Linqi,et al. Influence of inserting steel plates on the cable force and alignment of main arch[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(6): 53-58.
[4] 郭彦林, 崔晓强. 滑动索系结构的统一分析方法——冷冻-升温法[J]. 工程力学, 2003, 20(4): 156-160.
GUO Yanlin, CUI Xiaoqiang. A unified analytical method for gliding cable structures—Frozen-heated method[J]. Engineering Mechanics, 2003, 20(4): 156-160.
[5] AUFAURE M. A three-node cable element ensuring the continuity of the horizontal tension; A clamp-cable element[J]. Computers & Structures, 2000, 74(2): 243-251.
[6] 陈诗再, 杨孟刚. 滑移索结构分析的精确三维有限元法[J]. 工程力学, 2023, 40(2): 135-144.
CHEN Shizai, YANG Menggang. High-precision three-dimensional finite element method for analysis of sliding cable structures[J].Engineering Mechanics, 2023, 40(2): 135-144.
[7] 于祥敏, 陈德伟, 白植舟, 等. 基于角平分线的工程滑移索结构分析方法[J]. 同济大学学报(自然科学版), 2018, 46(3): 300-304.
YU Xiangmin, CHEN Dewei, BAI Zhizhou, et al. Analytical method for sliding cable structures in engineering based on angle bisector[J].Journal of Tongji University (Natural Science), 2018, 46(3): 300-304.
[8] 张清华, 王玉威, 程震宇, 等. 主缆与鞍座间摩擦抗力评估的混合解析数值法[J]. 中国公路学报, 2020, 33(11): 158-168.
ZHANG Qinghua, WANG Yuwei, CHENG Zhenyu, et al. Hybrid analytical-numerical method for evaluating the frictional resistance between main cable and saddle[J].China Journal of Highway and Transport, 2020, 33(11): 158-168.
[9] MCDONALD B M, PEYROT A H. Analysis of cables suspended in sheaves[J]. Journal of Structural Engineering, 1988, 114(3): 693-706.
[10] KAN Ziyun, WU Jinwei, DONG Kaijun, et al. A general framework for sliding cable analysis with elastic catenary equation[J]. International Journal of Solids and Structures, 2021, 233: 111290.
[11] 唐建民, 沈祖炎. 悬索结构非线性分析的滑移索单元法[J]. 计算力学学报, 1999, 16(2): 143-149.
TANG Jianmin, SHEN Zuyan. A nonlinear analysis method with sliding cable elements for the cable structures[J].Chinese Journal of Computational Mechanics, 1999, 16(2): 143-149.
[12] 邓小康,李小贝. 空间缆索悬索桥倾斜母线鞍座设计位置计算的改进方法[J]. 重庆交通大学学报(自然科学版), 2023, 42(2): 8-12.
DENG Xiaokang, LI Xiaobei. Improvedcalculation method of lean busbar saddles design position of suspension bridge with spatial cables[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(2): 8-12.
[13] 周水兴, 孙峰, 段佳旺. 长阳天池口清江特大桥主拱圈悬臂浇筑斜拉扣挂系统设计[J]. 世界桥梁, 2024, 52(3): 61-67.
ZHOU Shuixing, SUN Feng, DUAN Jiawang. Design of cable-stayed cantilever casting system for arch of Tianchikou Qingjiang River Bridge in Changyang County[J].World Bridges, 2024, 52(3): 61-67.
[14] 周琳淇. 钢管混凝土拱桥缆索吊装扣锚索一体化施工控制研究[D]. 重庆: 重庆交通大学, 2019.
ZHOU Linqi.Study on Integrated Construction Control of Cable Hoisting Buckle and Anchor Cable of Concrete Filled Steel Tubular Arch Bridge[D]. Chongqing: Chongqing Jiaotong University, 2019.
[15] 周水兴. 浙江三门健跳大桥拱肋安装与施工控制计算[J]. 重庆交通学院学报, 2002, 21(2): 1-5.
ZHOU Shuixing. Rib assemble and construction control calculation of Zhejiang Sanmen Jiantiao Bridge[J]. Journal of Chongqing Jiaotong Institute, 2002, 21(2): 1-5.
[16] 秦大燕, 郑皆连, 杜海龙, 等. 斜拉扣挂1次张拉扣索索力优化计算方法及应用[J]. 中国铁道科学, 2020, 41(6): 52-60.
QIN Dayan, ZHENG Jielian, DU Hailong, et al. Optimization calculation method for stayed-buckle cable force under one-time tension by fastening stay method and its application[J].China Railway Science, 2020, 41(6): 52-60.
[17] YU Mengsheng, YAO Xinyu, WANG Longlin, et al. Rib alignment control of long-span arch bridge in cable-stayed buckle by multi-objective optimization[J]. Buildings, 2024, 14(10): 3281. |