[1] 金伟良,赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报(工学版), 2002, 36(4): 371-380.
JIN Weiliang, ZHAO Yuxi. State-of-the-art on durability of concrete structures [J]. Journal of Zhejiang University (Engineering Science), 2002, 36(4): 371-380.
[2] PAPADAKIS V G. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Material Journal,1991, 88(4): 363-373.
[3] 牛荻涛, 陈亦奇, 于澍. 混凝土结构的碳化模式与碳化寿命分析[J]. 西安建筑科技大学学报, 1995, 27(4): 365-369.
NIU Ditao, CHEN Yiqi, YU Shu. Model and reliability analysis for carbonation of concrete structures [J]. Journal of Xi’an University of Architecture &Technology, 1995, 27(4): 365-369.
[4] FIB. FIB Model Code for Concrete Structures 2010 [S]. Lausanne: International Federation for Structural Concrete (FIB), 2013.
[5] TAFFESE W Z, SISTONEN E, PUTTONEN J. CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods [J]. Construction and Building Materials, 2015, 100: 70-82.
[6] LIU K, ALAM M S, ZHU J, et al. Prediction of carbonation depth for recycled aggregate concrete using ANN hybridized with swarm intelligence algorithms [J]. Construction and Building Materials, 2021, 301: 124382.
[7] CHEN Z, LIN J, SAGOE-CRENTSIL K, et al. Development of hybrid machine learning-based carbonation models with weighting function [J]. Construction and Building Materials, 2022, 321: 126359.
[8] EKOLU S O. Model for practical prediction of natural carbonation in reinforced concrete: Part 1-formulation [J]. Cement and Concrete Composites, 2018, 86: 40-56.
[9] JUNG H, IM S-B, AN Y-K. Probability-based concrete carbonation prediction using on-site data [J]. Applied Sciences, 2020, 10(12): 4330.
[10] GU Hui, LI Q. Updating deterioration models of reinforced concrete structures in carbonation environment using in-situ inspection data [J]. Structure and Infrastructure Engineering, 2022, 18(2): 266-277.
[11] 住房和城乡建设部, 国家市场监督管理总局. 既有混凝土结构耐久性评定标准:GBT51355—2019[S]. 北京:中国建筑工业出版社,2019.
Ministry of Housing and Urban-Rural Development, State Administration for Market Regulation. Durability Evaluation Standard for Existing Concrete Structures: GBT 51355—2019[S]. Beijing: China Architecture Publishing & Media Co. Ltd., 2019.
[12] SOUTO-MARTINEZ A, DELESKY E A, FOSTER K E O, et al. A mathematical model for predicting the carbon sequestration potential of ordinary Portland cement (OPC) concrete [J]. Construction and Building Materials, 2017, 147: 417-427.
[13] JSCE Guidelines for Concrete No.16. Standard Specifications for Concrete Structures-2007 (English Version) [S]. Tokyo: Japan Society of Civil Engineers (JSCE), 2010.
[14] 周星妤. 基于机器学习的混凝土碳化深度预测模型[D]. 福州:福州大学, 2024.
ZHOU Xingyu. Prediction Model of Concrete Carbonation Depth Based on Machine Learning [D]. Fuzhou: Fuzhou University, 2024.
[15] OMODIKOVA M, STRAUSS A, ZAMBON I. FIB models for modeling of chloride ion ingress and concrete carbonation: Levels of assessment of input parameters [J]. Structural Concrete, 2020, 21(4): 1377-1384. |