[1] 闾海琪. 2022年我国经济发展新动能稳步扩大[J]. 中国统计, 2023(9): 30-32.
LYU Haiqi. In 2022, the new kinetic energy of China’s economic development will expand steadily [J]. China Statistics, 2023(9): 30-32.
[2] 鲍琼, 屈琦凯, 唐涵润, 等. 网联环境下基于多驾驶人风险评价的不良行为主动干预研究[J]. 交通运输系统工程与信息, 2022, 22(4): 283-292.
BAO Qiong, QU Qikai, TANG Hanrun, et al. Multi-drivers risk evaluation based proactive intervention of drivers’ risky behavior under connected transportation contexts [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 283-292.
[3] TOLEDO T, MUSICANT O, LOTAN T. In-vehicle data recorders for monitoring and feedback on drivers’ behavior [J]. Transportation Research Part C: Emerging Technologies, 2008, 16(3): 320-331.
[4] ELLISON A B, BLIEMER M C J, GREAVES S P. Evaluating changes in driverbehavior: A risk profiling approach [J]. Accident Analysis & Prevention, 2015, 75: 298-309.
[5] 蓝章礼, 范亮, 张洪, 等. 基于姿态辅助的轻量化驾驶行为检测网络[J]. 重庆交通大学学报(自然科学版), 2025, 44(8): 75-82.
LAN Zhangli, FAN Liang, ZHANG Hong, et al. Lightweight driving behavior detection network based on attitude assistance [J]. Journal of Chongqing Jiaotong University (Natural Science), 2025, 44(8): 75-82.
[6] 潘义勇, 王羿. 考虑性别差异的老年行人事故严重程度时间不稳定性分析[J]. 重庆交通大学学报(自然科学版), 2025, 44(5): 102-111.
PAN Yiyong, WANG Yi. Temporal instability analysis of injury severities for older pedestrians considering gender differences [J]. Journal of Chongqing Jiaotong University (Natural Science), 2025, 44(5): 102-111.
[7] TOLEDO T, LOTAN T. In-vehicle data recorder for evaluation of driving behavior and safety [J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1953(1): 112-119.
[8] WANG Jianqiang, ZHENG Yang, LI Xiaofei, et al. Driving risk assessment using near-crash database through data mining of tree-based model [J]. Accident Analysis & Prevention, 2015, 84: 54-64.
[9] SHANNON C E. A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27(3): 379-423.
[10] GUAN Wei, CHEN Haolin, LI Xuewei, et al. Study on the influence of connected vehicle fog warning systems on driving behavior and safety [J]. Journal of Advanced Transportation, 2022, 2022(1): 8436388.
[11] 戢晓峰, 耿昭师. 山区双车道公路货车碰撞预测的双变量冲突极值模型[J]. 交通运输系统工程与信息, 2022, 22(2): 230-238.
JI Xiaofeng, GENG Zhaoshi. Bivariate traffic conflict extreme value model of truck collision prediction on two-lane mountain highway [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 230-238.
[12] CAVADAS J, AZEVEDO C L, FARAH H, et al. Road safety of passing maneuvers: A bivariate extreme value theory approach under non-stationary conditions [J]. Accident Analysis & Prevention, 2020, 134: 105315.
[13] YUE Quansheng, GUO Yanyong, SAYED T, et al. Bayesian hybrid gamma-GPD model for extreme traffic conflict threshold determination in the peak over threshold approach [J]. Accident Analysis & Prevention, 2024, 206: 107717.
[14] ZHENG Lai, HUANG Yao, SAYED T, et al. Validating the Bayesian hierarchical extreme value model for traffic conflict-based crash estimation on freeway segments with site-level factors [J]. Accident Analysis & Prevention, 2021, 159: 106269.
[15] YENTES J M, HUNT N, SCHMID K K, et al. The appropriate use of approximate entropy and sample entropy with short data sets [J]. Annals of Biomedical Engineering, 2013, 41(2): 349-365.
[16] PARK M H, KIM J H T. Estimating extreme tail risk measures with generalized Pareto distribution [J]. Computational Statistics & Data Analysis, 2016, 98: 91-104. |