中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2015, Vol. 34 ›› Issue (2): 108-111.DOI: 10.3969/j.issn.1674-0696.2015.02.23

• • 上一篇    下一篇

短时路段行程时间分布预测方法研究

刘妍   

  1. 长春师范大学 计算机科学与技术学院,吉林 长春 130032
  • 收稿日期:2013-12-15 修回日期:2014-01-08 出版日期:2015-04-15 发布日期:2015-06-01
  • 作者简介:刘妍(1978-),女,吉林长春人,讲师,博士,主要从事智能交通与计算机应用方面的研究。E-mail:liuy78@126.com。
  • 基金资助:
    吉林省教育厅"十二五"科学技术研究(吉教科合字[2013]第261号);长春师范大学自然科学基金项目(长师大自科合字[2014]第004号)

Prediction Research on Travel-Time Distribution of Short-Term Path

Liu Yan   

  1. School of Computer Science & Technology, Changchun Normal University, Changchun 130032, Jilin, China
  • Received:2013-12-15 Revised:2014-01-08 Online:2015-04-15 Published:2015-06-01

摘要: 为有效利用历史路段行程时间数据,提高短时路段行程时间分布估计精度,提出了一种自适应数据融合方法。通过分析历史行程时间数据与实时行程时间数据间的关系,构建了二者间的映射模型,有效地将非精确对应下的数据区间映射为精确对应状态,并根据所建非线性模型得到预测数据分布,极大地提高了行程时间分布的预测精度。考虑时间延迟等因素,采用DYNASMART仿真软件对所提出的方法进行了模拟验证。结果表明:随着采集步长的增加,应用自适应数据融合方法得到的短时行程时间预测分布与随时间变化的实际行程时间分布状态保持一致,这有效保障了数据预测的质量,为智能交通管控策略的制定提供可靠的依据。

关键词: 交通工程, 路段行程时间, 分布, 预测方法, 自适应

Abstract: In order to effectively use historical travel-time data and improve the travel-time distribution estimation precision of short-term road section, an adaptive data fusion method was proposed. By analyzing the relationship between historical travel-time data and real-time travel time data, a mapping mode of the two ways was constructed. The mode can effectively make the data interval of inaccurate corresponding state map to accurate corresponding state and greatly improve the prediction precision of the travel-time distribution. With consideration of factors such as time delay, DYNASMART simulation software was used to analyze the proposed method in the experiment. The results show that with acquisition step length increasing, the short-term travel-time prediction distribution obtained from the adaptive data fusion model is consistent with the actual travel-time distribution, which effectively ensures the quality of prediction data and provides a reliable basis for the establishment of intelligent traffic control strategy for the future.

Key words: traffic engineering, path travel-time, distribution, prediction method, self-adaption

中图分类号: