中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2019, Vol. 38 ›› Issue (11): 127-132.DOI: 10.3969/j.issn.1674-0696.2019.11.20

• 载运工具与机电工程 • 上一篇    下一篇

基于RBF神经网络模型的车门多目标轻量化设计

李军,冷川   

  1. (重庆交通大学 机电与车辆工程学院,重庆 400074)
  • 收稿日期:2018-03-20 修回日期:2018-11-05 出版日期:2019-11-21 发布日期:2019-11-21
  • 作者简介:李军(1964—),男,教授,博士,主要从事节能与新能源汽车方面的研究。E-mail:cqleejun@163.com。 通信作者:冷川(1992—),男,硕士研究生,主要从事现代车辆设计方法与理论方面的研究。E-mail:1973389871@qq.com。
  • 基金资助:
    国家自然科学青年科学基金项目(51705051);重庆市特种车辆动力传动系统关键零部件设计与测试工程技术研究中心开放基金项目(csct2015yfpt-zdsys30001)

Multi-objective Lightweight Design of Vehicle Door Based on RBF Neural Network Model

LI Jun, LENG Chuan   

  1. (College of Mechatronics & Automobile Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China)
  • Received:2018-03-20 Revised:2018-11-05 Online:2019-11-21 Published:2019-11-21

摘要: 以某轻型客车车门为研究对象,在HyperMesh中建立有限元模型,对车门进行刚度和模态分析。以部分因子试验设计所得到的关键零件厚度为设计变量,采用哈默斯雷试验设计方法进行样本数据设计,使用RBF神经网络模型拟合车门质量、一阶模态频率、二阶模态频率、上扭转刚度、下扭转刚度、侧向弯曲刚度及下沉刚度响应的近似模型。在近似模型基础上,以车门质量最小和一阶模态频率最大为优化目标,以车门刚度和二阶模态频率为约束,应用多目标遗传算法进行优化设计,实现了车门轻量化最优目标。

关键词: 车辆工程, 车门, 哈默斯雷试验设计, RBF神经网络模型, 轻量化

Abstract: Taking a light bus door as the research object, its finite element model was set up in HyperMesh software. The stiffness and modal analysis of the door were carried out. Taking the thicknesses of the key parts obtained from the partial factorial design of experiment as the design variables, the sample data was designed by the method of Hammersley test design. RBF neural network model was used to fit the approximate models of door mass, first-order modal frequency, second-order modal frequency, upper torsional stiffness, lower torsional stiffness, lateral bending stiffness and sinking stiffness response. Based on the approximate models and multi-objective genetic algorithm, the optimization goal for a lightweight door was gained with minimizing door mass and maximizing first-order modal frequency as optimization objectives, door stiffness and second-order modal as constraints.

Key words: vehicle engineering, vehicle door, Hammersley design of experiment, RBF neural network model, lightweight

中图分类号: