中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (12): 62-69.DOI: 10.3969/j.issn.1674-0696.2022.12.09

• 交通基础设施工程 • 上一篇    下一篇

斜拉索病害检测机器人研究进展

张洪1,2,袁野2,夏润川2,周建庭1,2,陈悦1,2   

  1. (1. 重庆交通大学 省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074; 2. 重庆交通大学 土木工程学院,重庆 400074)
  • 收稿日期:2021-07-12 修回日期:2021-09-12 发布日期:2023-01-16
  • 作者简介:张 洪(1987—),男,四川阆中人,教授,博士,主要从事桥梁状态智能感知方面的研究。E-mail:hongzhang@cqjtu.edu.cn 通信作者:周建庭(1972—),男,浙江金华人,教授,博士,主要从事桥梁病害诊断与加固方面的研究。E-mail:jtzhou@cqjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52278291, U20A20314);重庆市杰出青年科学基金项目(cstc2020jcyj-jqX0006);重庆市自然科学基金项目(CSTB2022NSCQ-BHX0036, cstc2022ycjh-bgzxm0086)

Research Progress of Stay Cable Disease Detection Robot

ZHANG Hong1,2, YUAN Ye2, XIA Runchuan2, ZHOU Jianting1,2, CHEN Yue1,2   

  1. (1. State Key Laboratory of Bridge and Tunnel Engineering in Mountainous Areas Jointly Constructed by the Ministry and the Province, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2021-07-12 Revised:2021-09-12 Published:2023-01-16

摘要: 机器人检测具有全面、准确、及时、可靠的特点,是最合适的桥梁斜拉索病害检测手段。通过论述机器人在桥梁斜拉索病害检测中的应用现状,对机器人的机械爬升系统、病害检测系统进行了分析,并展望了发展趋势。分析结果表明:轮式爬升方式存在夹持力过大的问题,且无法穿越斜拉索上的特殊障碍物;视觉检测系统可对光滑表面的斜拉索表观病害进行快速准确地自识别检测,但缺乏对非光滑表面斜拉索的自识别检测研究,且表观病害自识别模型还需改进;基于漏磁法的钢丝损伤检测系统则可实现对斜拉索内部钢丝损伤的定量化表征,但还缺乏统一、普适的漏磁检测评定指标,且缺乏能自动识别斜拉索钢丝损伤病害的模型。

关键词: 桥梁工程;斜拉索;病害检测;机器人;表观病害;钢丝损伤

Abstract: Robot detection is the most suitable detection method for stay cable diseases because of its comprehensive, accurate, timely, and reliable characteristics. The application status of robot in cable disease detection was summarized, the mechanical climbing system and disease detection system of robot were analyzed, and the development trend was prospected. The analysis results show that the wheel climbing mode has the problem of excessive clamping force and cannot pass through the special obstacles on the stay cable. The visual inspection system can quickly and accurately self-identify and detect the apparent diseases of stay cables with smooth surfaces; however, there is a lack of research on self-identification detection of cables with non-smooth surfaces, and the self-identification model of apparent diseases needs to be improved. Cable wire damage detection system based on MFL can be used to quantitatively characterize the cable wire damage inside the stay cable, but there is still a lack of uniform and universal MFL evaluation index and a model that can automatically identify the cable wire damage.

Key words: bridge engineering; stay cable; disease detection; robot; surface diseases; cable wire damage

中图分类号: