[1] 韦汉超, 谢如鹤. 广东省港口货物吞吐量预测及分析[J]. 物流工程与管理, 2012, 34(3): 41-44.
WEI Hanchao, XIE Ruhe. Forecast and analysis of the port cargo throughput in Guangdong Province [J]. Logistics Engineering and Management, 2012, 34(3): 41-44.
[2] GOSASANG V, CHANDRAPRAKAIKUL W, KIATTISIN S. A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port [J]. The Asian Journal of Shipping and Logistics, 2011, 27(3): 463-482.
[3] RUIZ-AGUILAR J J, TURIAS I J, JIMNEZ-COME M J. Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting [J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 67: 1-13.
[4] 李广儒, 朱庆辉. 基于Elman神经网络的港口货物吞吐量预测[J]. 重庆交通大学学报(自然科学版), 2020, 39(6): 8-12.
LI Guangru, ZHU Qinghui. Forecasting of port cargo throughput based on Elman neural network [J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(6): 8-12.
[5] 梁绍东. 基于数据生成的三次指数平滑预测模型研究[J]. 管理观察, 2018, 38(10): 26-27.
LIANG Shaodong. Research on cubic exponential smoothing prediction model based on data generation [J]. Management Observer, 2018, 38(10): 26-27.
[6] 潘婷. 宁波舟山港货物吞吐量预测分析与思考[D]. 舟山: 浙江海洋大学, 2019.
PAN Ting. Analysis and Thinking on the Forecast of Freight Throughput of Ningbo Zhoushan Port [D]. Zhoushan: Zhejiang Ocean University, 2019.
[7] LIU Min, TAYLOR J W, CHOO W C. Further empirical evidence on the forecasting of volatility with smooth transition exponential smoothing [J]. Economic Modelling, 2020, 93: 651-659.
[8] 韩以伦, 徐新新. 基于ARIMA和GM模型的青岛港货物吞吐量预测研究[J]. 水道港口, 2019, 40(2): 241-248.
HAN Yilun, XU Xinxin. Research on cargo throughput forecast of Qingdao Port based on ARIMA and GM [J]. Journal of Waterway and Harbor, 2019, 40(2): 241-248.
[9] DRAGAN D, KESHAVARZSALEH A, INTIHAR M, et al. Throughput forecasting of different types of cargo in the Adriatic seaport Koper [J]. Maritime Policy & Management, 2021, 48(1): 19-45.
[10] 黄跃华, 陈小龙. 基于优化GM(1, 1)模型的港口吞吐量预测[J]. 中国航海, 2019, 42(4): 136-140.
HUANG Yuehua, CHEN Xiaolong. Optimized GM (1, 1) model for predicting port throughput [J]. Navigation of China, 2019, 42(4): 136-140.
[11] 陆云峰. 基于组合预测模型的大连港集装箱海铁联运量预测[J]. 中国市场, 2018(27): 21-24.
LU Yunfeng. Prediction of container sea-rail intermodal transportation volume in Dalian port based on combined prediction model [J]. China Market, 2018(27): 21-24.
[12] 朱经君, 兰培真, 徐圣豪. 基于新陈代谢灰色马尔科夫模型的芜湖港集装箱吞吐量预测[J]. 集美大学学报(自然科学版), 2022, 27(4): 333-338.
ZHU Jingjun, LAN Peizhen, XU Shenghao. Prediction of container throughput of Wuhu Port based on metabolic grey Markov model [J]. Journal of Jimei University (Natural Science), 2022, 27(4): 333-338.
[13] 曾勇, 沈最意. 基于改进的灰色马尔科夫模型的集装箱吞吐量预测[J]. 浙江海洋大学学报(自然科学版), 2022, 41(6): 574-582.
ZENG Yong, SHEN Zuiyi. Container throughput prediction based on improved grey-Markov model [J]. Journal of Zhejiang Ocean University (Natural Science), 2022, 41(6): 574-582.
[14] 汤天辰, 李林. 基于灰色马尔科夫模型的上海港集装箱吞吐量预测[J]. 物流科技, 2020, 43(3): 105-108.
TANG Tianchen, LI Lin. Prediction of container throughput of Shanghaiport based on grey Markov model [J]. Logistics Sci-Tech, 2020, 43(3): 105-108.
[15] 田雪, 王丹丹, 王锐月, 等. 基于灰色模型的港口吞吐量预测研究——以曹妃甸港口为例[J]. 数学的实践与认识, 2018, 48(4): 280-284.
TIAN Xue, WANG Dandan, WANG Ruiyue, et al. Research for port throughput prediction based on gray model—Taking Caofeidian Port as an example[J]. Mathematics in Practice and Theory, 2018, 48(4): 280-284.
[16] 黄跃华, 陈小龙, 王亚辉. 基于正弦和的GM(1, 1)幂模型在港口吞吐量预测中的应用[J]. 上海海事大学学报, 2019, 40(3): 69-73.
HUANG Yuehua, CHEN Xiaolong, WANG Yahui. Application of GM (1, 1) power model based on sum of sine in port throughput prediction [J]. Journal of Shanghai Maritime University, 2019, 40(3): 69-73.
[17] 斯彩英. 基于灰色加权马尔科夫模型的港口货物吞吐量预测——以宁波舟山港为例[J]. 数学的实践与认识, 2023, 53(2): 46-57.
SI Caiying. Prediction of port cargo throughput based on grey weighted Markov chain mode—Take Ningbo Zhoushan Port as an example [J]. Mathematics in Practice and Theory, 2023, 53(2): 46-57.
[18] 李文瀚. 基于灰色理论的D港区需求预测与港口规划研究[D]. 青岛: 青岛大学, 2020.
LI Wenhan. Demand Prediction and Port Planning of D Port Area Based on Grey Theory [D]. Qingdao: Qingdao University, 2020.
[19] 姜汝翰. 基于灰色模型的青岛港集装箱吞吐量预测研究[D]. 大连: 大连海事大学, 2019.
JIANG Ruhan. Research on the Prediction of Container Throughput of Qingdao Port Based on Grey Model [D]. Dalian: Dalian Maritime University, 2019.
[20] 王振振, 苌道方, 朱宗良, 等. 基于ES-Markov模型的港口集装箱季度吞吐量分析与预测[J]. 中国航海, 2019, 42(4): 125-130.
WANG Zhenzhen, CHANG Daofang, ZHU Zongliang, et al. Analysis and prediction of port quarterly container throughput with ES-Markov model [J]. Navigation of China, 2019, 42(4): 125-130.
[21] 罗亚琼. 基于灰色马尔科夫模型的基坑开挖变形预测[D]. 昆明: 昆明理工大学, 2021.
LUO Yaqiong. Deformation Analysis of Foundation Pit Excavation Based on Grey Markov Model Prediction [D]. Kunming: Kunming University of Science and Technology, 2021.
[22] 林小明, 华晨, 胡尊乐, 等. 马尔科夫链在溧阳市降水量预测中的应用[J]. 江苏水利, 2022(7): 41-45.
LIN Xiaoming, HUA Chen, HU Zunle, et al. Application of Markov chain in precipitation prediction and analysis of Liyang City [J]. Jiangsu Water Resources, 2022(7): 41-45.
[23] 杜柏松, 艾万政, 胡林燕, 等. 基于优化灰色马尔科夫动态模型的上海港集装箱吞吐量预测[J]. 上海海事大学学报, 2021, 42(1): 76-81.
DU Baisong, AI Wanzheng, HU Linyan, et al. Container throughput prediction of Shanghai Port based on optimized grey Markov dynamic model [J]. Journal of Shanghai Maritime University, 2021, 42(1): 76-81.
[24] 孙鑫. 改进灰色—马尔科夫理论在斜拉桥施工控制中的应用研究[D]. 重庆: 重庆交通大学, 2020.
SUN Xin. Application Research of Improved Gray-Markov Theory in Construction Control of Cable-Stayed Bridge [D]. Chongqing: Chongqing Jiaotong University, 2020.
[25] 周敏. 地震灾害下应急物资需求预测与供应策略仿真研究[D]. 北京: 北京交通大学, 2019.
ZHOU Min. Emergency Material Demand Forecasting and Supply Strategy Simulation under Earthquake Disaster[D]. Beijing: Beijing Jiaotong University, 2019. |