中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (8): 25-32.DOI: 10.3969/j.issn.1674-0696.2025.08.04

• 桥梁与隧道工程 • 上一篇    

基于DBSCAN-LERP-LSTM的桥梁静力水准垂直位移监测异常值检测与分析

潘国兵1,虞洪兵1,宿林2,张顺涛3,吴畏1   

  1. (1. 重庆交通大学 智慧城市学院,重庆 400074;2. 四川省铁路建设有限公司,四川 成都 500643; 3. 四川九一五工程勘察设计有限公司,四川 眉山 620020)
  • 收稿日期:2024-08-28 修回日期:2024-11-12 发布日期:2025-09-05
  • 作者简介:潘国兵(1976—),男,四川眉山人,教授,博士,主要从事智能测绘方面的研究。E-mail:50030350@qq.com 通信作者:虞洪兵(1998—),男,安徽安庆人,硕士,主要从事自动化监测方面的研究。E-mail:1092831200@qq.com
  • 基金资助:
    国家自然科学基金项目(42074004)

Detection and Analysis of Anomalous Values of Static Level Instrument Vertical Displacement Monitoring of Bridges Based on DBSCAN-LERP-LSTM

PAN Guobing1,YU Hongbing1,SU Lin2,ZHANG Shuntao3,WU Wei1   

  1. (1. Smart Cities Institute,Chongqing Jiaotong University,Chongqing 400074, China; 2. Sichuan Railway Construction Co., Ltd.,Chengdu 500643, Sichuan, China; 3. Sichuan Province Bureau of Geology and Mineral Resources,Geological Team 915,Meishan 620020,Sichuan, China)
  • Received:2024-08-28 Revised:2024-11-12 Published:2025-09-05

摘要: 针对桥梁沉降数据受环境变化和传感器故障影响而产生噪声的问题,提出了一种基于DBSCAN-LERP-LSTM的分析方法,以提高数据可靠性和分析准确性。以某高速公路斜拉桥2021—2023年的静力水准仪监测数据为例,先用DBSCAN算法,邻域半径ε为40,领域内最少点数M为20,剔除9.8%异常值并线性插值填补缺失值,再通过时间序列分解发现2022年底沉降值约-0.4 mm,最后构建LSTM模型并用PSO、SSA、ACO的3种方法优化参数。结果表明:PSO-LSTM模型最优,均方根误差(RMSE)为0.419,平均绝对误差(MAE)为0.337,平均绝对百分比误差(MAPE)为0.142%,为静力水准仪监测系统提供了有效的数据处理流程,对桥梁长期安全运营意义重大。

关键词: 桥梁工程;桥梁健康监测;DBSCAN模型;LSTM模型;参数优化

Abstract: To address the issue of noise of bridge settlement data caused by environmental changes and sensor failures, a DBSCAN-LERP-LSTM-based analysis method was proposed to enhance data reliability and analysis accuracy. Taking the 2021—2023 static level instrument monitoring data of a cable-stayed bridge on a highway as an example, the DBSCAN algorithm (ε=40, M=20) was firstly used to remove 9.8% of the outliers and fill in the missing values through linear interpolation. Then, it was found that the settlement value reached approximately -0.4 mm at the end of 2022 by time series decomposition. Finally, an LSTM model was constructed, and the parameters were optimized by three methods such as PSO, SSA and ACO. The results show that the PSO-LSTM model performs the best, with an RMSE of 0.419, an MAE of 0.337, and an MAPE of only 0.142%, which provides an effective data processing procedure for static level instrument monitoring systems and is of great significance for the long-term safe operation of bridges.

Key words: bridge engineering; bridge health monitoring; DBSCAN model; LSTM model; parameter optimization

中图分类号: