[1] 李静佳, 陶雄, 李东平. 桥梁健康监测与评估中的静力水准技术研究[J]. 测绘与空间地理信息, 2021, 44(4): 195-197.
LI Jingjia, TAO Xiong, LI Dongping. Research on static leveling technology in bridge health monitoring and evaluation[J]. Geomatics & Spatial Information Technology, 2021, 44(4): 195-197.
[2] 贾军, 张涛. 高精度静力水准测量系统在桥梁变形监测中的应用[J]. 公路工程, 2018, 43(2): 172-176.
JIA Jun, ZHANG Tao. Application of high accuracy static level automatic system in bridge deformation monitoring[J]. Highway Engineering, 2018, 43(2): 172-176.
[3] 钟国强,柳尚,徐润,等.考虑异常监测数据影响的桥梁拉索振动频率识别方法研究[J].中南大学学报(自然科学版),2023,54(12):4870-4881.
ZHONG Guoqiang, LIU Shang, XU Run, et al. Research on bridge cable vibration frequency identification method considering the influence of abnormal monitoring data [J]. Journal of Central South University (Science and Technology), 2023, 54(12): 4870-4881.
[4] DESJARDINS S, LAU D. Advances in intelligent long-term vibration-based structural health-monitoring systems for bridges[J]. Advances in Structural Engineering, 2022, 25(7): 1413-1430.
[5] ENTEZAMI A, SARMADI H, BEHKAMAL B, et al. On continuous health monitoring of bridges under serious environmental variability by an innovative multi-task unsupervised learning method[J]. Structure and Infrastructure Engineering, 2024, 20(12): 1975-1993.
[6] CIVERA M, SIBILLE L, ZANOTTI FRAGONARA L, et al. A DBSCAN-based automated operational modal analysis algorithm for bridge monitoring[J]. Measurement, 2023, 208: 112451.
[7] 李元梦, 李登华, 丁勇. 基于DBSCAN的大坝安全监测异常数据检测算法[J]. 水电能源科学, 2024, 42(1): 149-152.
LI Yuanmeng, LI Denghua, DING Yong. Abnormal data detection algorithm for dam safety monitoring based on DBSCAN[J]. Water Resources and Power, 2024, 42(1): 149-152.
[8] 戴领, 李少林, 刘光彪, 等. 基于LV-DBSCAN算法的大坝安全监测数据异常检测[J]. 人民长江, 2024, 55(1): 236-241.
DAI Ling, LI Shaolin, LIU Guangbiao, et al. Detection of abnormal values in dam safety monitoring data based on LV-DBSCAN algorithm[J]. Yangtze River, 2024, 55(1): 236-241.
[9] 汤凯.我国临空经济区对地区经济增长的影响——基于离散型空间溢出效应[J].中国流通经济,2020,34(8):81-90.
TANG Kai. The impact of Chinas airport economic zones on regional economic growth-Based on discrete spatial spillover effects [J]. Chinas Circulation Economy, 2020, 34(8): 81-90.
[10] 唐娟, 秦放鸣, 唐莎. 中国经济高质量发展水平测度与差异分析[J]. 统计与决策, 2020, 36(15): 5-8.
TANG Juan, QIN Fangming, TANG Sha. Measurement and difference analysis of China’s high-quality economic development level[J]. Statistics & Decision, 2020, 36(15): 5-8.
[11] 王晓玲,王成,王佳俊,等.大坝渗压混合预测的STL分解-集成学习模型[J].水力发电学报,2024,43(9):106-123.
WANG Xiaoling, WANG Cheng, WANG Jiajun, et al. STL decomposition-ensemble learning model for hybrid prediction of dam seepage pressure [J]. Journal of Hydroelectric Power, 2024, 43(9):106-123.
[12] DOROUDI R, LAVASSANI S H H, SHAHROUZI M. Optimal tuning of three deep learning methods with signal processing and anomaly detection for multi-class damage detection of a large-scale bridge[J]. Structural Health Monitoring, 2024, 23(5): 3227-3252.
[13] 唐菲菲,唐天俊,朱洪洲,等.结合注意力机制和Bi-LSTM的降雨型滑坡位移预测[J].测绘通报,2022 (9):74-79.
TANG Feifei, TANG Tianjun, ZHU Hongzhou, et al. Rainfall-type landslide displacement prediction combined with attention mechanism and Bi-LSTM [J]. Surveying and Mapping Bulletin, 2022 (9): 74-79.
[14] 许江波,侯鑫敏,吴雄,等.基于MIC-XGBoost-LSTM模型的边坡位移预测研究[J].中国公路学报,2024,37(10):38-48.
XU Jiangbo, HOU Xinmin, WU Xiong, et al. Research on slope displacement prediction based on MIC-XGBoost-LSTM model [J]. China Journal of Highway and Transport, 2024, 37(10): 38-48.
[15] 莫林海.基于静力水准和GNSS的多传感器数据融合地基沉降监测技术[D].西安:长安大学,2021.
MO Linhai. Research on Foundation Settlement Monitoring Technology Based on Multi-sensor Data Fusion of Static Leveling and GNSS [D]. Xian: Changan University, 2021. |