中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2007, Vol. 26 ›› Issue (4): 82-85.

• • 上一篇    下一篇

基于改进BP算法神经网络的路况评价模型研究

王小雄,闫小华,姚永锋,白建军   

  1. 陕西省高速公路建设集团公司,陕西 西安 710054
  • 收稿日期:2006-07-07 修回日期:2015-05-18 出版日期:2007-08-15 发布日期:2015-05-18
  • 作者简介:王小雄(1972—),男,陕西西安人,工程师,主要从事公路工程养护与管理.E—mail:bear1972@126.com.

Study on Road Condition Evaluation Model Based on Improved BP Calculation Neural Networks

WANG Xiao-xiong,YAN Xiao-hua,YAO Yong-feng,BAI Jian-ju   

  1. Highway Construction Group Coporation of Shanxi Province,Shanxi Xian 710054,China
  • Received:2006-07-07 Revised:2015-05-18 Online:2007-08-15 Published:2015-05-18

摘要: 通过利用在BP神经网络中增加反馈信号及偏差单元的网络模型,生成内部回归网络,对BP神经网络进行改 进,据此得出改进的BP神经网络的具体步骤.在此基础上,结合陕西省高速公路沥青路面的实际情况建立了路况评 价模型,并对该模型的具体应用做了研究.研究结果表明:网络的收敛速度很好,训练结果与实际路况结果相差很 小,利用改进BP算法神经网络建立的路况评价模型不仅方便易用,而且精度很高.

关键词: 人工神经网络, BP算法, 内部回归网络, 学习, 路况评价模型

Abstract: The intemal regression networks are set forth based on the application of feedback signals and deviation unit onto the neuaral networks.The specific study procedure of the BP neural networks is put forward.Furthermore,the road condition evalution model is made Oil the practical condition of the expressway bituminous road by the specific operation of the mode1. Th e study concludes contain that:the deviation between training result and practical result is small;the condition evaluation model based on the improved BP calculation neural networks is not only convenient to handle,but also more accurate.

Key words: artificial neural networks, BP calculation, intemal regression net, study, road condition evaluation mode1

中图分类号: