中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2007, Vol. 26 ›› Issue (6): 119-122.

• • 上一篇    下一篇

高速公路交通流的分形维数与相空间重构预测

李建章1,朱顺应1,2   

  1. 1.重庆交通大学,重庆 400074;2.武汉理工大学,湖北 武汉 430063
  • 收稿日期:2006-09-11 修回日期:2006-11-22 出版日期:2007-12-15 发布日期:2015-01-22
  • 作者简介:李建章(1963—),男,重庆铜梁人,副教授,从事信息经济学和交通运输系统工程的教学与研究.E-mail:lijianzhang@cquc.edu.cn.
  • 基金资助:
    交通部应用基础研究项目(200331981408)

Fractal Dimension and Forecasting of Trafic Flow for Freeway Based on Phase Space Reconstruction

LI Jian-zhang1,ZHU Shun-ying1,2   

  1. 1.Chongqing Jiaotong University,Chongqing 400074.China;2.Wuhan University of Technology,Hubei Wuhan 430063,China
  • Received:2006-09-11 Revised:2006-11-22 Online:2007-12-15 Published:2015-01-22

摘要: 对成渝高速公路短时交通流通过计算不同时间尺度下Hurst指数而等到其相应的分形维数.结果表明,时间间 隔越短的交通流,其分形维数越大,结构越复杂.由于时间问隔越短的交通流随机性大和复杂的结构.所以预测也就 越困难.提出了一种新的基于相空间重构和移动平均相结合的预测方法——移动平均最近邻域法,从理论与实际数 据两方面分析和验证了该方法对短时交通流预测的有效性.

关键词: 高速公路, 交通流预测, Hurst指数, 分形维数, 相空间重构, 移动平均最近邻域法

Abstract: By calculating the Hurst Index of the short time traffic flow in variant time scales for freeway,a fractal dimension was put forward.It showed that the interval time of traffic flow was shorter,the fractal dimension was bigger,and the structure was more complex.So it is m0re difficult to forecast.We present a new forecasting method—moving average nearest neighborhood forecasting method,which is based on the phase space reconstruction and combining with the moving average forecasting and the nearest neighborhood method.The efficiency of the method Was proved by theory and actual traffic flow.

Key words: freeway, forecasting of traffic flow, Hurst index, fractal dimension, phase space reconstruction, moving average nearest neighborhood forecasting method

中图分类号: