重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (03): 37-44.DOI: 10.3969/j.issn.1674-0696.2022.03.06
赵磊娜1,2,王延鹏2,邵毅明2,李淑庆2,温欣雨1
收稿日期:
2021-03-01
修回日期:
2021-06-09
发布日期:
2022-03-24
作者简介:
赵磊娜(1981—),女,山东青岛人,副教授,硕士,主要从事交通信息预测方面的研究。E-mail:7146931@qq.com
基金资助:
ZHAO Leina1,2, WANG Yanpeng2, SHAO Yiming2, LI Shuqing2, WEN Xinyu1
Received:
2021-03-01
Revised:
2021-06-09
Published:
2022-03-24
摘要: 为描述短时交通量数据中隐藏的非线性与非平稳特性,提高短时交通量的预测精度,进而更好地构建智能交通平台,提出了一种基于时变滤波经验模态分解(TVF-EMD)与最小二乘支持向量机(LSSVM)的混合预测模型,即TVF-EMD-LSSVM模型。其中:TVF-EMD方法主要用来降低数据中暗含的非平稳性对预测结果影响;LSSVM模型是为了描摹数据中包含的非线性信息演化趋势。研究结果表明:相比经验模态分解(EMD)方法而言,TVF-EMD方法的分解结果更加适合交通流预测;该分解技术与LSSVM模型的结合可提供更好的预测结果,相比LSSVM模型而言,其平均绝对误差、平均相对百分比误差、均方根误差和均方根相对误差分别降低了9.186、18.947%、13.591、0.316%,且均等系数提高了0.082 1。
中图分类号:
赵磊娜1,2,王延鹏2,邵毅明2,李淑庆2,温欣雨1. 利用时变经验模态分解的主干道短时交通量预测[J]. 重庆交通大学学报(自然科学版), 2022, 41(03): 37-44.
ZHAO Leina1,2, WANG Yanpeng2, SHAO Yiming2, LI Shuqing2, WEN Xinyu1. Short-Term Traffic Volume Prediction of Arterial Road Using TVF-EMD Method[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(03): 37-44.
[1] ZHONG Renxin, LUO J C, CAI H X, et al. Forecasting journey time distribution with consideration to abnormal traffic conditions[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 292-311. [2] 唐坤.数据驱动的城市路网行程时间估计与预测方法研究[D].南京:东南大学,2019. TANG Kun. Research on Data-Driven Travel Time Estimation and Prediction in Urban Road Network[D]. Nanjing: Southeast University, 2019. [3] DAVIS G A, NIHAN N L. Using time-series designs to estimate changes in freeway level of service, despite missing data[J].Transportation Research Part A: General, 1984, 18(5/6): 431-438. [4] KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J].European Transport Research Review, 2015, 7: 1-9. [5] ZHAO Zheng, CHEN Weihai, YUE Haosong, et al. A novel short-term traffic forecast model based on travel distance estimation and ARIMA[C]∥ 2016 Chinese Control and Decision Conference(CCDC). IEEE, 2016: 6270-6275. [6] YANG Zhaosheng, BING Qichun, LIN Ciyun, et al. Research on short-term traffic flow prediction method based on similarity search of time series[J]. Mathematical Problems in Engineering, 2014: 1-8. [7] WANG Yibing, PAPAGEORGIOU M. Real-time freeway traffic state estimation based on extended Kalman filter: A general approach[J]. Transportation Research Part B: Methodological, 2005, 39(2): 141-167. [8] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B: Methodological, 1984, 18 (1): 1-11. [9] WILLIAMS B M, DURVASULA A P, BROWN D. Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models[J].Journal of the Transportation Research Record, 1998, 1644(1): 132-141. [10] KANDIL N, WAMKEUE R, SAAD M, et al. An efficient approach for short term load forecasting using artificial neural networks[J].International Journal of Electrical Power & Energy Systems, 2006, 28(8): 525-530. [11] ZHANG Kunpeng, ZHENG Liang, LIU Zijian, et al. A deep learning based multitask model for network-wide traffic speed prediction[J]. Neurocomputing, 2019, 396: 438-450. [12] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach [J].Transportation Research Part C: Emerging Technologies, 2005, 13(3): 211-234. [13] ZHU Jiazheng, CAO Jinxin, ZHU Yuan. Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections[J]. Transportation Research Part C: Emerging Technologies, 2014, 47(2): 139-154. [14] XU Dongwei, WANG Yongdong, PENG Peng, et al. Real-time road traffic state prediction based on kernel-KNN[J]. Transportmetrica A: Transport Science, 2020, 16(1): 104-118. [15] WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281. [16] WANG Jin, SHI Qixin. Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory[J]. Transportation Research Part C: Emerging Technologies, 2013, 27: 219-232. [17] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J].Neural Processing Letters, 1999, 9: 293-300. [18] SABRY M, ABDEL-LATIF H, HAGGAG S A, et al. Use of box and Jenkins time series technique in traffic volume forecasting[J]. Research Journal of Social Sciences, 2007, 2: 83-90. [19] KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J].European Transport Research Review, 2015, 7(3): 1-9. [20] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B: Methodological,1984, 18 (1): 1-11. [21] POLSON N G, SOKOLOV V O. Deep learning for short-term traffic flow prediction[J].Transportation Research Part C: Emerging Technologies, 2017, 79: 1-17. [22] PAMULA T. Road traffic parameters prediction in urban traffic manage-ment systems using neural networks[J].Transport Problems an International Scientific Journal, 2011, 6(3): 123-128. [23] TANG Jinjun, GAO Fan, LIU Fang, et al. A denoising scheme-based traffic flow prediction model: Combination of ensemble empirical mode decomposition and fuzzy C-means neural network[J]. IEEE Access, 2020, 8: 546-559. [24] 赵阳阳,夏亮,江欣国.基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J].交通运输工程学报,2020,20(4):194-204. ZHAO Yangyang, XIA Liang, JIANG Xinguo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. [25] TIAN Xiujuan, YU Dexin, XING Xue, et al. Hybrid short-term traffic flow prediction model of intersections based on improved complete ensemble empirical mode decomposition with adaptive noise[J]. Advances in Mechanical Engineering, 2019, 11(4): 1-15. [26] FENG Shuo, WANG Xingmin, SUN Haowei, et al. A better unde-rstanding of long-range temporal dependence of traffic flow time series[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 639-650. [27] LI Li, SU Xiaonan, ZHANG Yi, et al. Trend modeling for traffic time series analysis: An integrated study[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3430-3439. [28] LI Zhiheng, LI Yuebiao, LI Li. A comparison of detrending models and multi-regime models for traffic flow prediction[J]. IEEE Intelligent Transportation Systems Magazine, 2014, 6(4): 34-44. [29] DAI Xingyuan, FU Rui, ZHAO Enmin, et al. DeepTrend 2.0: A light-weighted multi-scale traffic prediction model using detrending[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 142-157. [30] YANG Bailin, SUN Shulin, LI Jianyuan, et al. Traffic flow predic-tion using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327. [31] ZHANG Weibin, YU Yinghao, QI Yong, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711. [32] DO L N N, VU H L, VO B Q, et al. An effective spatial-temporal attention based neural network for traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 12-28. [33] LI Li, SU Xiaonan, WANG Yanwei, et al. Robust causal dependence mining in big data network and its application to traffic flow predictions[J]. Transportation Research Part C: Emerging Technologies, 2015, 58(B): 292-307. [34] GUO Fangce, POLAK J W, KRISHNAN R. Predictor fusion for short-term traffic forecasting[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 90-100. [35] LYU Yisheng, DUAN Yanjie, KANG Wenwen, et al. Traffic flow prediction with big data: A deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873. [36] 戴豪民,许爱强,孙伟超.基于改进奇异谱分析的信号去噪方法[J].北京理工大学学报,2016,36(7):727-732. DAI Haomin, XU Aiqiang, SUN Weichao. Signal denoising method based on improved singular spectrum analysis[J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 727-732. [37] LI Heng, LI Zhi, MO Wei. A time varying filter approach for empirical mode decomposition[J]. Signal Processing, 2017, 138: 146-158. [38] WANG Yanpeng, ZHAO Leina, LI Shuqing, et al. Short term traffic flow prediction of urban road using time varying filtering based empirical mode decomposition[ J]. Applied Sciences, 2020, 10(6): 1-15. [39] JIANG Yan, HUANG Guoqing. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction[J]. Energy Conversion and Management, 2017, 144: 340-350. [40] 余林,舒勤,柏吉琼.基于 EMD 聚类与 ARMA 的交通流量预测方法[J].公路,2015(5):124-129. YU Lin, SHU Qin, BAI Jiqiong. Traffic predication method based on EMD cluster and ARMA[J]. Highway, 2015(5): 124-129. [41] 蒋肖.基于混沌理论和数据融合的短时交通流预测[D].重庆:重庆邮电大学,2016. JIANG Xiao.Chaos Theory and Data Fusion Based Short-term Prediction for Traffic Flow[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016. [42] 王涛,谢思红,黎文皓.基于FFOS-ELM和PF的短时交通流自适应预测模型[J].重庆交通大学学报(自然科学版),2021,40(6):21-27. WANG Tao, XIE Sihong, LI Wenhao. Adaptive prediction model of short-term traffic flow based on FFOS-ELM and PF[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(6): 21-27. [43] 翁小雄,郝翊.基于LSTM引入客车占比特征的短时交通流预测[J].重庆交通大学学报(自然科学版),2020,39(11):20-25. WENG Xiaoxiong, HAO Yi. Short-term traffic flow prediction based on LSTM introduction of passenger car proportion characteristics[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(11): 20-25. |
[1] | 韩宝睿, 濮海建, 朱震军. 基于改进Lotka-Volterra模型的城市轨道交通与常规公交竞合关系演变研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(2): 106-112. |
[2] | 何烈云, 周妍, 黄少泽, 刘强. 叠加放行信号控制方式适用条件及效益评价[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 113-119. |
[3] | 李振龙, 董爱华, 杨磊. 基于群决策和熵权法的换道轨迹评价研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 120-127. |
[4] | 翁小雄, 覃镇林, 张鹏飞. 基于图卷积门控循环网络的个体地铁出行预测[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 1-6. |
[5] | 蓝章礼, 王超, 杨晴晴, 金豪. 基于多粒度特征分割的车辆重识别算法[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 7-15. |
[6] | 赵欣, 酆磊, 林皓博, 陈曦, 肖宇舟. 相邻T型路口非直线路径绿波控制方法研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 16-23. |
[7] | 张智勇, 黄鑫灿, 邵越. 礼让行人条件下右转保护型相位设置阈值研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 24-33. |
[8] | 冯天军, 杨夏玉, 夏春亭, 梁春岩, 李赫楠. 基于分隔设施的寒区城市道路行车安全间距研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 34-38. |
[9] | 潘义勇, 吴静婷, 施颖. 交叉口处老年人碰撞事故伤害严重程度分析[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 39-44. |
[10] | 吕贞, 戚春华, 朱守林. 草原公路不同分心状态下驾驶人动态视觉特性[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 45-52. |
[11] | 张玲玉, 王力, 张立立, 张骁, 孙德辉. 智能汽车的切换型人机共驾研究进展与展望[J]. 重庆交通大学学报(自然科学版), 2022, 41(09): 130-139. |
[12] | 赵树恩, 刘伟. 基于改进VGG模型的低照度道路交通标志识别[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 178-184. |
[13] | 李英帅1,闫琦若1,赵聪2. 基于公交车右转内轮差效应的范围研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(09): 43-48. |
[14] | 阎莹1,刘革1,田敏1,刘佳乐1,穆岩2. 基于Trucksim的弯坡组合路段临界车速确定方法[J]. 重庆交通大学学报(自然科学版), 2021, 40(09): 49-54. |
[15] | 胡明伟1,2,3,施小龙1,翟素云4,刘鹏1. 自动驾驶混合交通流的交通和环境效益评估[J]. 重庆交通大学学报(自然科学版), 2021, 40(08): 7-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||