[1] 许伊婷, 张蕊. 基于同伴群行人仿真的通道设置研究[J]. 系统仿真学报, 2019, 31(11): 2477-2484.
XU Yiting, ZHANG Rui. Research on corridor setting based on pedestrian simulation of social groups[J].Journal of System Simulation, 2019, 31(11): 2477-2484.
[2] 陈赛. 地铁车站T字型通道行人通行效率研究[D]. 北京: 北京交通大学, 2018.
CHEN Sai.Study on Pedestrian Traffic Efficiency of T-Shaped Passage in Subway Station[D]. Beijing: Beijing Jiaotong University, 2018.
[3] BULIUNG R N, KANAROGLOU P S. A GIS toolkit for exploring geographies of household activity/travel behavior[J].Journal of Transport Geography, 2006, 14(1): 35-51.
[4] ZHANG Yongping, MARTENS K, LONG Ying. Revealing group travel behavior patterns with public transit smart card data[J].Travel Behavior and Society, 2018, 10: 42-52.
[5] 朱康丽. 大数据视角下城市轨道交通结伴出行识别方法及行为复杂性研究[D]. 北京: 北京交通大学, 2022.
ZHU Kangli.Research on the Identification Method and Behavior Complexity of Urban Rail Transit Group Trips from the Perspective of Big Data[D]. Beijing: Beijing Jiaotong University, 2022.
[6] SUN Lijun, AXHAUSEN K W, LEE D H, et al. Understanding metropolitan patterns of daily encounters[J].Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34): 13774-13779.
[7] TIAN Xiancai, ZHENG Baihua. Study group travel behavior patterns from large-scale smart card data[C]//2019 IEEE International Conference on Big Data (Big Data). Los Angeles, CA, USA. IEEE, 2019: 1232-1237.
[8] MA Xiaolei, WU Y J, WANG Yinhai, et al.Mining smart card data for transit riders travel patterns[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 1-12.
[9] YE Pengyao, MA Yiqing. Clustering-based travel pattern for individual travel prediction of frequent passengers by using transit smart card[J].Transportation Research Record: Journal of the Transportation Research Board, 2023, 2677(2): 1278-1287.
[10] CUI Zhiyong, LONG Ying. Perspectives on stability and mobility of transit passengers travel behavior through smart card data[J].IET Intelligent Transport Systems, 2019, 13(12): 1761-1769.
[11] 周航, 陈学武. 集时空聚类和指标筛选的公共交通通勤者识别[J]. 交通运输工程与信息学报, 2022, 20(1): 89-97.
ZHOU Hang, CHEN Xuewu. Public transportation commuter identification based on spatiotemporal clustering and index screening[J]. Journal of Transportation Engineering and Information, 2022, 20(1): 89-97.
[12] 项煜, 陈晓旭, 杨超,等. 基于地铁售检票系统刷卡数据的乘客出行模式分析[J]. 城市轨道交通研究, 2020, 23(6):63-67.
XIANG Yu, CHEN Xiaoxu, YANG Cao, et al. Analysis of passengers travel patterns based on subway automatic fee collection system smart card data[J]. Urban Mass Transit, 2020, 23(6):63-67.
[13] HALL E T. The Hidden Dimension[M]. New York: Anchor Books, 1988.
[14] 常丹. 地铁行人微观行为参数量化研究[D]. 北京: 北京交通大学, 2010.
CHANG Dan.Quantified Study of Microscopic Pedestrian Behavior Parameters in Subway[D]. Beijing: Beijing Jiaotong University, 2010.
[15] 李亮,赵星,张海燕,等. 基于时空维度变量的杭州市轨道交通站点聚类研究[J] . 北京交通大学学报, 2022, 46(4):31-42.
LI Liang, ZHAO Xing, ZHANG Haiyan, et al. Clustering research on Hangzhou metro station based on spatiotemporal variables[J]. Journal of Beijing Jiaotong University, 2022, 46(4):31-42. |