中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2019, Vol. 38 ›› Issue (10): 41-49.DOI: 10.3969/j.issn.1674-0696.2019.10.07

• 桥梁与隧道工程 • 上一篇    下一篇

基于改进MATLAB-BP神经网络算法的隧道岩爆预测模型

孙臣生   

  1. (山西省交通规划勘察设计院有限公司,山西 太原 030012)
  • 收稿日期:2018-04-28 修回日期:2018-11-30 出版日期:2019-10-14 发布日期:2019-10-14
  • 作者简介:孙臣生(1979—),男,山东单县人,高级工程师,主要从事隧道与地下空间方向的研究与设计工作。E-mail:549634029@qq.com。

A Prediction Model of Rock Burst in Tunnel Based on the Improved MATLAB-BP Neural Network

SUN Chensheng   

  1. (The Communication Planning Surveying and Designing Institute of Shanxi Province, Taiyuan 030012, Shanxi, P. R. China)
  • Received:2018-04-28 Revised:2018-11-30 Online:2019-10-14 Published:2019-10-14

摘要: 针对岩爆预测这一地下工程领域中的世界性难题,通过总结和阐述众多学者关于岩爆影响因素、预测方法和判别准则的相关研究成果,引用围岩最大主应力σmax,切向应力σθ,单轴抗拉强度σt、单轴抗压强度σc,点荷载强度Is和σθ/σc,σc/σt,以及隧道埋深h,冲击倾向性指数Wet这9个主要预测关联性指标,在收集国内外典型岩爆地下工程基于现场地应力监测数据资料的条件下,以非线性科学理论为指导,建立考虑以上9个关键性预测指标的BP神经网络改进预测模型,并利用工程实例对模型进行验证。研究结果表明:改进算法模型实现了非线性理论和网络分析法之间的有机结合,避免了普通算法存在的网络性收敛速度慢容易陷进局部最小点等运行缺陷,该预测模型分析较复杂结构具有明显优势;改进算法模型预测结果与现场实际情况相符,这可以为今后类似隧道及地下工程施工的岩爆风险预测及评估提供一定的借鉴和指导作用。

关键词: 隧道工程, 岩爆, 影响因素, 判断准则, MATLAB-BP神经网络, 改进预测模型

Abstract: In view of the worldwide problem of rock burst prediction in the field of underground engineering, the relevant research results of many scholars on the influencing factors, prediction methods and criteria of rock burst were summarized and expounded firstly. Furthermore, 9 main predictive correlation indexes were introduced, including maximum principal stress σmax, tangential stress of rock mass σθ, uniaxial tensile strength σt, uniaxial compressive strength σc, point load strength of rock examples Is, σθ/σc,σc/σt, buried depth of tunnel h and impact tendency index Wet. Under the condition of collecting typical underground rock burst projects at home and abroad, based on in-situ stress monitoring data and guided by non-linear scientific theory, an improved BP neural network prediction model considering the above 9 key prediction indexes was established. The proposed model was validated by an engineering example. The research results show that: the improved algorithm model realizes the organic combination of the non-linear theory and the network analysis method, avoids the shortcomings of the ordinary algorithm, such as slow convergence speed of the network, easy to fall into the local minimum point. The proposed prediction model has obvious advantages over the complex structure. The prediction results of the improved algorithm model are in good agreement with the actual situation, which can provide guidance and reference for the rock burst prediction of tunnel and underground engineering.

Key words: tunnel engineering, rock burst, influencing factor, judgment criteria, MATLAB-BP neural network, improved prediction model

中图分类号: