中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2009, Vol. 28 ›› Issue (6): 1071-1074.DOI: 10.3969/j.issn.1674-0696.2009.06.25

Previous Articles     Next Articles

Forecast?of?Highway?Passenger?Transport?Volume?Based?on?Rough?Set?Theory

CHEN Jian1, HUO Ya-min1, FU Zhi-yan2, TENG Yan-bin1   

  1. 1.?School?of?Traffic?&?Transportation,?Southwest?Jiaotong?University,?Sichuan?Chengdu?610031,?China?;??2.?School?of?Logistic,?Southwest?Jiaotong?University,?Sichuan?Chengdu?610031,?China
  • Received:2009-06-11 Revised:2009-07-15 Online:2009-12-15 Published:2015-04-15

基于粗糙集的公路客运量预测

陈??坚1,霍娅敏1,傅志妍2,滕彦彬1   

  1. 1.西南交通大学交通运输学院,四川成都610031;2.西南交通大学物流学院,四川成都610031
  • 作者简介:陈??坚(1985—),男,江西赣州人,博士研究生,研究方向为交通运输规划与管理。E-mail:chenjian525@126.com。

Abstract: Prediction?of?highway?passenger?transport?volume?is?not?only?the?basis?of?developing?and?planning?the?highway?passenger?transport,?but?also?the?premise?of?planning?comprehensive?passenger?transport?center?and?the?city'?s?comprehensive?transport.?The?forecast?model?of?passenger?transport?volume?is?constructed?on?the?base?of?rough?set?theory,?through?the?discretization?of?continuous?attributes?in?decision?table?of?forecasting?the?highway?passenger?transport?volume,?constructing?the?decision-making?matrix?and?obtaining?the?simplest?decision-making?rules.?The?simplest?decision-making?rules?obtained?by?the?model?avoid?the?errors?caused?by?fluctuations?in?statistical?data?during?the?years,?so?the?final?forecast?results?are?growth?intervals?rather?than?absolute?values,?which?better?reflects?the?needs?of?highway?passenger?transport.?Finally?the?model?is?applied?to?predict?highway?passenger?transport?volume?in?Chengdu?in?the?next?five?years,?and?the?growth?interval?of?passenger?transport?volume?is?got.

Key words: highway transport , growth interval , rough set , decision-making rules ;

摘要: 公路客运量预测不仅是进行客运发展规划的基础,也是制定城市综合客运枢纽规划及综合交通规划的前提。 通过对公路客运量预测决策表连续属性的离散化、决策矩阵构造及最简决策规则的获取,建立了基于粗糙集的客 运量预测模型。该模型获取的最简决策规则避免了因历年统计数据波动而造成的预测误差,最终的预测结果为增 长区间而不是绝对数值,更好的反映了公路客运需求。最后应用该模型预测成都市未来5a的公路客运量,得到了 客运量的增长区间。

关键词: 公路运输, 增长区间, 粗糙集, 决策规则

CLC Number: