[1] SILVA R, KANG S M, AIROLDI E M.Predicting traffic volumes and estimating the effects of shocks in massive transportation systems [J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18):5643-5648.
[2] SUN Huijun, WU Jianjun, WU Lijuan, et al.Estimating the influence of common disruptions on urban rail transit networks [J].Transportation Research Part A: Policy and Practice, 2016, 94:62-75.
[3] 杨灵.城市轨道交通大客流运输组织方案研究[D].北京:中国铁道科学研究院,2019.
YANG Ling.Research on the Transit Organization in Urban Rail Transit under Mass Passenger Flow [D].Beijing: China Academy of Railway Sciences, 2019.
[4] 李臣,汪波,白云云,等.基于AFC数据的城市轨道交通突发事件客流影响分析[J].铁道科学与工程学报,2019,16(10):2620-2627.
LI Chen, WANG Bo, BAI Yunyun, et al.Impact analysis of passenger flow under urban rail transit emergency conditions based on AFC data [J].Journal of Railway Science and Engineering, 2019, 16(10): 2620-2627.
[5] 闫超,龚露阳,李达标,等.基于手机信令数据的旅客联程出行时空特征分析方法[J].交通运输研究,2019,5(6):36-42, 49.
YAN Chao, GONG Luyang, LI Dabiao, et al.Spatial and temporal characteristics of intermodal passenger transportation based on mobile signaling data [J].Transport Research, 2019, 5(6): 36-42, 49.
[6] 李勇.基于出租车GPS数据的城市交通拥堵识别和关联性分析[D].哈尔滨:哈尔滨工业大学,2016.
LI Yong.Congestion Identification and Correlation Analysis on Urban Traffic Based on Taxi GPS Data [D].Harbin: Harbin Institute of Technology, 2016.
[7] YU Wenhao.Discovering frequent movement paths from taxi trajectory data using spatially embedded networks and association rules [J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3):855-866.
[8] 项译.基于手机信令数据的旅游交通客流特征分析研究[D].南京:东南大学,2017.
XIANG Yi.Research of Tourist Traffic Flow Characteristics Based on Phone Signaling Data [D].Nanjing: Southeast University, 2017.
[9] 褚凡.基于关联规则挖掘的北京市轨道交通出行特征研究[D].昆明:昆明理工大学,2020.
CHU Fan.Research on Travel Characteristics of Beijing Rail Transit Based on Association Rules Mining [D].Kunming: Kunming University of Science and Technology, 2020.
[10] GUO Xin, WANG D Z W, WU Jianjun, et al.Mining commuting behavior of urban rail transit network by using association rules [J].Physica A: Statistical Mechanics and Its Applications, 2020, 559:125094.
[11] SHAIKH M R, MCNICHOLAS P D, ANTONIE M L, et al.Standardizing interestingness measures for association rules [J].Statistical Analysis and Data Mining: The ASA Data Science Journal, 2018, 11(6):282-295.
[12] 杨涛.基于多源数据的枢纽间异常状态及受影响换乘客流识别研究[D].西安:长安大学,2021.
YANG Tao.Research on Recognition of Abnormal State and Affected Transfer Passenger between Hubs Based on Multi-Source Data [D].Xian: Changan University, 2021. |