[1] 何宇强, 毛保华, 陈绍宽, 等. 铁路客运站旅客最高聚集人数计算方法研究[J]. 铁道学报, 2006, 28(1): 6-11.
HE Yuqiang, MAO Baohua, CHEN Shaokuan, et al. Research on the methods of calculating the maximum assembling at railway passenger stations [J]. Journal of the China Railway Society, 2006, 28(1):6-11.
[2] 叶玉玲, 李文卿. 高铁客运站最高聚集人数计算方法研究[J]. 华东交通大学学报, 2018, 35(4): 76-82.
YE Yuling, LI Wenqing. Calculating method of maximum aggregate number at high-speed rail terminal [J]. Journal of East China Jiaotong University, 2018, 35(4): 76-82.
[3] 张天伟, 高桂凤, 罗玉屏, 等. 铁路客运站旅客最高聚集人数计算模型[J]. 交通运输工程学报, 2011, 11(2): 79-83.
ZHAN Tianwei, GAO Guifeng, LUO Yuping, et al. Calculation model of maximum number for gathering passenger at railway passenger station [J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 79-83.
[4] DING C, DUAN J X, ZHANG Y R, et al. Using an ARIMA-GARCH modeling approach to improve subway short-term ridership forecasting accounting for dynamic volatility [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(4): 1054-1064.
[5] 王爱丽,董宝田,高春霞.铁路客运站旅客聚集分布仿真模型与算法研究[J].交通运输系统工程与信息,2013,13(1):142-148.
WANG Aili, DONG Baotian, GAO Chunxia. Assembling model and algorithm of railway passengers distribution [J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1):142-148.
[6] 陈喜春,王钰淇.基于改进图解法的铁路客运站旅客集聚规律[J].兰州交通大学学报,2015,34(4):90-94,106.
CHEN Xichun, WANG Yuqi. Assembling rule passengers at railway station based on the improved graphic method [J]. Journal of Lanzhou Jiaotong University, 2015, 34(4):90-94,106.
[7] 姚加林,赵思源.大型高铁车站最高聚集人数计算模型研究[J].铁道科学与工程学报, 2019, 16(1): 34-41.
YAO Jialin, ZHAO Siyuan. Research on the calculation model of the maximum assembling passengers in large high-speed railway station [J]. Journal of Railway Science and Engineering, 2019, 16(1): 34-41.
[8] 李兆丰,倪少权,孙克洋,等.基于多特征融合的城市轨道交通短时客流预测[J].交通运输工程与信息学报,2020,18(4):93-102.
LI Zhaofeng, NI Shaoquan, SUN Keyang, et al. Short-term passenger flow prediction of an urban rail transit based on multi-feature fusion [J]. Journal of Transportation Engineering and Information, 2020, 18(4): 93-102.
[9] 狄智玮, 包丹文, 张天炫, 等. 基于Agent理论的机场旅客出发时间与出行方式联合选择模型研究[J].交通信息与安全,2019, 37(4): 136-144.
DI Zhiwei, BAO Danwen, ZHANG Tianxuan, et al. A joint selection model of departure time and travel mode of airport passengers based on Agent theory [J]. Journal of Transport Information and Safety, 2019, 37(4): 136-144.
[10] 崔叙, 喻冰洁, 杨林川, 等. 城市轨道交通出行的时空特征及影响因素非线性机制——基于梯度提升决策树的成都实证[J]. 经济地理, 2021, 41(7): 61-72.
CUI Xu, YU Bingjie, YANG Linchuan, et al. Spatio-temporal characteristics and non-linear influencing factors of urban rail transit: The case of Chengdu using the gradient boosting decision tree [J]. Economic Geography, 2021, 41(7): 61-72.
[11] LU J, REN G, XU L H. Analysis of subway station distribution capacity based on automatic fare collection data of nanjing metro [J]. Journal of Transportation Engineering Part A: Systems, 2020, 146(2): 04019067.
[12] STASKO T, LEVINE B, REDDY A. Time-expanded network model of train-level subway ridership flows using actual train movement data [J]. Transportation Research Record, 2016, 2540(1): 92-101.
[13] CANTILLO V, MENDIETA O, CANTILLO J, et al. Air travelers behavior when choosing airline and flight departure time: The case of Medellín, Colombia [J]. Case Studies on Transport Policy, 2021, 9(2): 528-537.
[14] LIU Yang, LIU Zhiyuan, JIA Ruo. Deep PF: A deep learning based architecture for metro passenger flow prediction [J]. Transportation Research Part C: Emerging Technologies, 2019, 101 (4): 18-34. |