[1] SUN Limin, SHANG Zhiqiang, XIA Ye, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection [J]. Journal of Structural Engineering, 2020, 146(5): 04020073.
[2] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11): 1-20.
SUN Limin, SHANG Zhiqiang, XIA Ye. Development and prospect of bridge structural health monitoring in the context of big data [J]. China Journal of Highway and Transport, 2019, 32(11): 1-20.
[3] 李敬礼. 数据质量对大跨桥梁健康状态识别影响的研究[D]. 南京: 东南大学, 2019.
LI Jingli. Research on the Influence of Data Quality on Identification of the Health Status of Large-Span Bridges [D]. Nanjing: Southeast University, 2019.
[4] BRINCKER R, VENTURA C E. Introduction to Operational Modal Analysis [M]. Hoboken, New Jersey, USA: Wiley, 2015.
[5] RAINIERI C, FABBROCINO G. Operational Modal Analysis of Civil Engineering Structures: An Introduction and Guide for Applications [M]. New York: Springer, 2014
[6] MARTINEZ W L, MARTINEZ A R, SOLKA J L. Exploratory Data Analysis with MATLAB [M]. 3rd ed..
[7] 黄珍, 单德山, 李乔. 大跨斜拉桥运营模态分析方法对比[J]. 应用基础与工程科学学报, 2019, 27(1): 144-155.
HUANG Zhen, SHAN Deshan, LI Qiao. Comparison of operational modal analysis methods for long span cable-stayed bridge [J]. Journal of Basic Science and Engineering, 2019, 27(1): 144-155.
[8] 周彪, 李乔, 周筱航. 基于探索性数据分析的桥梁模态识别数据处理方法[J]. 四川建筑科学研究, 2017, 43(2): 33-37.
ZHOU Biao, LI Qiao, ZHOU Xiaohang. A data processing method for bridge modal parameter identification based on exploratory data analysis [J]. Sichuan Building Science, 2017, 43(2): 33-37.
[9] 杨明辉. 基于随机子空间的聚类算法自动识别桥梁模态参数方法对比研究[D]. 成都: 西南交通大学, 2022.
YANG Minghui. Comparison Research of Stochastic Subspace Method for Automatic Identification of Bridge Modal Parameters Based on Clustering Algorithms [D]. Chengdu: Southwest Jiaotong University, 2022.
[10] GHAREHBAGHI V R, NOROOZINEJAD FARSANGI E, NOORI M, et al. A critical review on structural health monitoring: Definitions, methods, and perspectives [J]. Archives of Computational Methods in Engineering, 2022, 29(4): 2209-2235.
[11] 张文, 姜祎盼, 张思光, 等. 基于经验分布和KL散度的协同过滤推荐质量评价研究[J]. 计算机应用研究, 2019, 36(9): 2625-2630.
ZHANG Wen, JIANG Yipan, ZHANG Siguang, et al. Study on recommendation quality evaluation based on empirical distribution and KL divergence [J]. Application Research of Computers, 2019, 36(9): 2625-2630.
[12] 刘名阳, 陈志刚, 吴嘉. 机会网络中计算节点间数据分组余弦相似度的高效转发策略[J]. 小型微型计算机系统, 2019, 40(1): 104-110.
LIU Mingyang, CHEN Zhigang, WU Jia. Efficient forwarding strategy for computing the cosine similarity of data packets between nodes in opportunistic network [J]. Journal of Chinese Computer Systems, 2019, 40(1): 104-110.
[13] 张潇. 桥梁损伤特征相似性度量对比分析[D]. 成都: 西南交通大学, 2021.
ZHANG Xiao. Comparative Analysis of Similarity Measures of Bridge Damage Characteristics [D]. Chengdu: Southwest Jiaotong University, 2021.
[14] 王昊天, 厉小润, 赵辽英. 基于箱型图与折点阈值边界的电缆分割方法[J]. 计算机应用与软件, 2021, 38(9): 244-249.
WANG Haotian, LI Xiaorun, ZHAO Liaoying. Cable segmentation method based on box-plot and turning point threshold boundary [J]. Computer Applications and Software, 2021, 38(9): 244-249.
[15] 赵宇. 可靠性数据分析[M]. 北京: 国防工业出版社, 2011.
ZHAO Yu. Data Analysis of Reliability [M]. Beijing: National Defense Industry Press, 2011.
[16] DE SOUZA R R, TOEBE M, MELLO A C, et al. Sample size and Shapiro-Wilk test: An analysis for soybean grain yield [J]. European Journal of Agronomy, 2023, 142: 126666.
[17] 罗干. 基于深度学习的桥梁结构健康监测数据清洗方法研究[D]. 南京: 东南大学, 2021.
LUO Gan. Research on Data Cleaning Method of Bridge Structure Heal-th Monitoring Based on Deep Learning [D]. Nanjing: Southeast University, 2021. |