[1] CHEN Qinghong, GU Ruifeng, HUANG Helai, et al. Using vehicular trajectory data to explore risky factors and unobserved heterogeneity during lane-changing [J]. Accident Analysis and Prevention, 2021, 151: 105871.
[2] GIPPS P G. A model for the structure of lane-changing decisions [J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414.
[3] HIDAS P. Modelling lane changing and merging in microscopic traffic simulation[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(5-6): 351-371.
[4] YANG Qi, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems [J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129.
[5] TOLEDO T, KOUTSOPOULOS H N, BEN-AKIVA M. Integrated driving behavior modeling [J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112.
[6] PENG Jinshuan, GUO Yingshi, FU Rui, et al. Multi-parameter prediction of drivers’ lane-changing behavior with neural network model [J]. Appl Ergon, 2015, 50: 207-217.
[7] 冯焕焕, 邓建华, 葛婷. 引入驾驶风格的熵权法多属性换道决策模型[J]. 交通运输系统工程与信息, 2020, 20(2): 139-144.
FENG Huanhuan, DENG Jianhua, GE Ting.Multi-attributes lane-changing decision model based on entropy weight with driving styles [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 139-144.
[8] 李根. 基于梯度提升决策树的高速公路交织区汇入模型[J]. 东南大学学报(自然科学版), 2018, 48(3): 563-567.
LI Gen.Merging model in freeway weaving section based on gradient boosting decision tree [J]. Journal of Southeast University (Natural Science Edition), 2018, 48(3): 563-567.
[9] 杨达, 吕蒙, 戴力源, 等. 车联网环境下自动驾驶车辆车道选择决策模型[J]. 中国公路学报, 2022, 35(4): 243-255.
YANG Da,LYU Meng, DAI Liyuan, et al. Decision-making model for lane selection of automated vehicles in connected vehicle environment [J]. China Journal of Highway and Transport, 2022, 35(4): 243-255.
[10] 陈永恒, 陶楚青, 白乔文, 等. 基于SVM的快速路合流区车辆间隙选择模型[J]. 东南大学学报(自然科学版), 2018, 48(4): 752-758.
CHEN Yongheng, TAO Chuqing, BAI Qiaowen, et al.Gap choice mo-del at urban expressway merging sections based on SVM [J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 752-758.
[11] 谢济铭, 彭博, 秦雅琴. 基于换道概率分布的多车道交织区元胞自动机模型[J]. 交通运输系统工程与信息, 2022, 22(3): 276-285.
XIE Jiming, PENG Bo, QIN Yaqin. Cellular automata model of multi-lane weaving area based on lane-changing probability distribution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 276-285.
[12] 韩皓, 谢天. 基于注意力Seq2Seq网络的高速公路交织区车辆变道轨迹预测[J]. 中国公路学报, 2020, 33(6): 106-118.
HAN Hao, XIE Tian. Lane change trajectory prediction of vehicles in highway interweaving area using Seq2Seq-attention network [J]. China Journal of Highway and Transport, 2020, 33(6): 106-118.
[13] 吴文静,战勇斌,杨丽丽,等.考虑安全间距的合流区可变限速协调控制方法[J].吉林大学学报(工学版),2022,52(6):1315-1323.
WU Wenjing, ZHAN Yongbin, YANG Lili, et al.Variable speed limit coordinated control method for confluence area considering safety spacing[J].Journal of Jilin University ( Engineering Edition ),2022,52(6):1315-1323.
[14] OUYANG Pengying, WU Jiaming, XU Chengcheng, et al. Traffic sa-fety analysis of inter-tunnel weaving section with conflict prediction models [J]. Journal of Transportation Safety & Security, 2022, 14(4): 630-654. |