[1] ZHANG Ying, WANG Anchen, ZUO Hongfu. Roller bearing perfor-mance degradation assessment based on fusion of multiple features of electrostatic sensors[J]. Sensors, 2019, 19(4): 824.
[2] CHEGINI S N, MANJILI M J H, BAGHERI A. New fault diagnosis approaches for detecting the bearing slight degradation[J]. Meccanica, 2020, 55(1): 261-286.
[3] XU Fan, TSE W T P, TSE Y L. Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label[J]. Applied Soft Computing, 2018, 73: 898-913.
[4] 余晓霞, 汤宝平, 魏静, 等. 强背景噪声条件下自适应图卷积神经网络的航空发动机附件机匣故障诊断方法[J]. 仪器仪表学报, 2021, 41(8): 78-86.
YU Xiaoxia, TANG Baoping, WEI Jing, et al. Fault diagnosis for aero-engine accessory gearbox by adaptive graph convolutional networks under intense background noise conditions[J]. Chinese Journal of Scientific Instrument, 2021, 41(8): 78-86.
[5] 王四军, 秦毅, 奚德君. 基于改进U-Net网络的齿轮点蚀测量[J]. 控制与决策, 2022, 37(12): 3233-3239.
WANG Sijun, QIN Yi, XI Dejun. Gear pitting measurement based on improved U-Net network[J]. Control and Decision, 2022, 37(12): 3233-3239.
[6] 肖家丰, 董绍江, 汤宝平, 等. 基于PEDCC性能退化指标及MCRNN的滚动轴承寿命状态识别方法[J]. 振动与冲击, 2022, 41(24): 176-183.
XIAO Jiafeng, DONG Shaojiang, TANG Baoping, et al. Rolling bearing life state recognition based on a PEDCC performance degradation indi-cator and MCRNN[J]. Journal of Vibration and Shock, 2022, 41(24): 176-183.
[7] 董绍江, 裴雪武, 汤宝平, 等. 基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法[J]. 机械工程学报, 2021, 57(15): 105-115.
DONG Shaojiang, PEI Xuewu, TANG Baoping, et al. Recognition of rolling bearing life status based on FNER performance degradation indicator and IDRSN[J]. Journal of Mechanical Engineering, 2021, 57(15): 105-115.
[8] 张晓锋, 郝如江, 程旺, 等. 多尺度特征融合与改进ResNet结合的齿轮箱故障诊断研究[J]. 机械科学与技术, 2023, 42(10): 1699-1704.
ZHANG Xiaofeng, HAO Rujiang, CHENG Wang, et al. Research on gearbox fault diagnosis combining multi-scale feature fusion and improved ResNet[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1699-1704.
[9] 邓飞跃, 丁浩, 郝如江. 基于多尺度特征融合残差神经网络的旋转机械故障诊断[J]. 振动与冲击, 2021, 40(24): 22-28.
DENG Feiyue, DING Hao, HAO Rujiang. Fault diagnosis of rotating machinery based on residual neural network with multi-scale feature fusion[J]. Journal of Vibration and Shock, 2021, 40(24): 22-28.
[10] PATEL S P, UPADHYAY S H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis[J]. Expert Systems with Applications, 2020, 154: 113400.
[11] YAN Mingming, WANG Xingang, WANG Bingxiang, et al. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model[J]. ISA Transactions, 2020, 98: 471-482.
[12] ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
[13] GHIASI G, LIN T Y, LE Q V. Dropblock: A regularization method for convolutional networks[J]. Advances in Neural Information Processing Systems, 2018: arXiv.1810.12890.
[14] QIU Hai, LEE J, LIN Jing, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prog-nostics[J]. Journal of Sound Vibration, 2006, 289(4-5): 1066-1090.
[15] HU Aijun, XIANG Ling, ZHU Lijia. An engineering condition indicator for condition monitoring of wind turbine bearings[J]. Wind Energy, 2020, 23(2): 207-219. |