[1] 李彬, 肖润谋, 闫晟煜, 等. 中国高速公路运输态势[J]. 交通运输工程学报, 2020, 20(4): 184-193.
LI Bin, XIAO Runmou, YAN Shengyu, et al. Transportation trend of Chinese expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 184-193.
[2] ZHU Feng, UKKUSURI S V. Modeling the proactive driving behavior of connected vehicles: A cell-based simulation approach[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(4): 262-281.
[3] 涂辉招, 遇泽洋, 朱晓晖, 等. 自动驾驶路测与人工驾驶事故致因影响对比分析[J]. 现代交通与冶金材料, 2021, 1(6): 40-48.
TU Huizhao, YU Zeyang, ZHU Xiaohui, et al. Comparative analysis of accident causes influence of AVs road testing and human-driving[J]. Modern Transportation and Metallurgical Materials, 2021, 1(6): 40-48.
[4] 汪敏, 涂辉招, 李浩. 基于跟驰行为谱的跟驰风险状态预测[J]. 同济大学学报(自然科学版), 2021, 49(6): 843-852.
WANG Min, TU Huizhao, LI Hao. Prediction of car-following risk status based on car-following behavior spectrum[J]. Journal of Tongji University (Natural Science), 2021, 49(6): 843-852.
[5] ABDOLMALEKI M, SHAHABI M, YIN Yafeng, et al. Itinerary planning for cooperative truck platooning[J]. Transportation Research Part B: Methodological, 2021, 153: 91-110.
[6] LITMAN T. Autonomous vehicle implementation predictions: implications for transport planning[J]. Transportation Research Board Annual Meeting, 2014, 42(2014): 36-42.
[7] GUNGOR O E, AL-QADI I L. Wander 2D: A flexible pavement design framework for autonomous and connected trucks[J]. International Journal of Pavement Engineering, 2022, 23(1): 121-136.
[8] 宋明涛, 陈丰. 自动驾驶对沥青面层寿命及养护成本影响分析[J]. 中国公路学报, 2022, 35(10): 125-134.
SONG Mingtao, CHEN Feng. Influence of autonomous vehicles on service life and maintenance cost of asphalt pavements[J]. China Journal of Highway and Transport, 2022, 35(10): 125-134.
[9] 陈昊昱. 面向智能货车编队的水泥路面结构拓扑优化及性能[D]. 上海: 同济大学, 2022.
CHEN Haoyu. Concrete Pavement for Smart Truck Platooning: Topology Optimization and the Performance Investigation[D].Shanghai: Tongji University, 2022.
[10] 秦严严, 陈凌志. 混有智能辅助驾驶车队的混合车流通行能力分析[J]. 重庆交通大学学报(自然科学版), 2022, 41(12): 1-10.
QIN Yanyan, CHEN Lingzhi. Traffic capacity of traffic flow mixed with intelligent assistant driving vehicle platoons[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(12): 1-10.
[11] 赵红专, 卢宁宁, 陈建鹏, 等. 一种V2X环境下基于改进卡尔曼滤波的CACC数据精度提高方法[J]. 重庆交通大学学报(自然科学版), 2022, 41(12): 151-156.
ZHAO Hongzhuan, LU Ningning, CHEN Jianpeng, et al. A CACC data accuracy improvement method based on improved Kalman filtering in V2X environment[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(12): 151-156.
[12] ZHANG Yuqin, XU Zhihang, WANG Zijian, et al. Impacts of communication delay on vehicle platoon string stability and its compensation strategy: A review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(4): 508-529.
[13] SCHMEITZ A, SCHWARTZ R S, RAVESTEIJN D, et al. Paper number ITS-TP1800 EU AUTOPILOT project: Platooning use case in Brainport [C]// 13th ITS European Congress. Netherlands: ITS, 2019.
[14] 智车科技. 世界卡车列队跟驰技术进展报告[J]. 智能网联汽车, 2021(2): 74-78.
Smart car technology. Report of truck platooning technology progress around the world[J]. Intelligent Connected Car, 2021(2): 74-78..
[15] 邓辉, 张学艳, 胡金玲, 等. 基于车联网的车辆编队标准现状及展望[J]. 移动通信, 2022, 46(8): 86-91.
DENG Hui, ZHANG Xueyan, HU Jinling, et al. The state of the art and perspective of platooning standards based on V2X[J]. Mobile Communications, 2022, 46(8): 86-91.
[16] 陈朝霞, 邢小高, 陈辰, 等. 基于不同车型轮迹分布规律的高速公路轮迹分布预测方法[J]. 河北工业大学学报, 2013, 42(3): 79-83.
CHEN Zhaoxia, XING Xiaogao, CHEN Chen, et al. Freeway wheel path distribution prediction method based on different type vehicles wheel path distribution law[J]. Journal of Hebei University of Technology, 2013, 42(3): 79-83.
[17] 冷雪. 多车道高速公路交通流运行特性分析[J]. 北方交通, 2020(8): 52-56.
LENG Xue. Analysis on operating characteristics of traffic flow of multi-lane expressway[J]. Northern Communications, 2020(8): 52-56. |