[1] 柏梦婷, 林杨欣, 马萌, 等. 行程时间预测方法研究[J]. 软件学报, 2020, 31(12): 3753-3771.
BAI Mengting, LIN Yangxin, MA Meng, et al. Survey of traffic travel-time prediction methods[J]. Journal of Software, 2020, 31(12): 3753-3771.
[2] 周雪梅, 杨晓光, 王磊. 公交车辆行程时间预测方法研究[J]. 交通与计算机, 2002, 20(6): 12-14.
ZHOU Xuemei, YANG Xiaoguang, WANG Lei. Research into methods to predict bus running time[J]. Computer and Communications, 2002, 20(6): 12-14.
[3] PATNAIK J, CHIEN S, BLADIKAS A. Estimation of bus arrival times using APC data[J]. Journal of Public Transportation, 2004, 7(1): 1-20.
[4] KUMAR B A, VANAJAKSHI L, SUBRAMANIAN S C. Bus travel time prediction using a time-space discretization approach[J].Transportation Research Part C: Emerging Technologies, 2017, 79: 308-332.
[5] REDDY K K, KUMAR B A, VANAJAKSHI L. Bus travel time prediction under high variability conditions[J]. Current Science, 2016, 111(4): 700-711.
[6] 张洋, 程恩. 基于ε-支持向量机回归的快速公交到站时间预测[J]. 厦门大学学报(自然科学版), 2017, 56(3): 442-448.
ZHANG Yang, CHENG En. The bus rapid transit arrival time prediction based on ε-SVR[J]. Journal of Xiamen University (Natural Science), 2017, 56(3): 442-448.
[7] 宋现敏, 刘明鑫, 马林, 等. 基于极限学习机的公交行程时间预测方法[J]. 交通运输系统工程与信息, 2018, 18(5): 136-142.
SONG Xianmin, LIU Mingxin, MA Lin, et al. Bus travel time prediction based on extreme learning machine[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 136-142.
[8] 韩勇, 周林, 高鹏, 等. 基于BP神经网络的公交动态行程时间预测方法研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 142-154.
HAN Yong, ZHOU Lin, GAO Peng, et al. Research on prediction method of bus dynamic travel time based on BP neural network[J]. Periodical of Ocean University of China, 2020, 50(2): 142-154.
[9] 史同广, 袁腾飞, 时柏营. 基于BP神经网络的公交周转时间预测研究[J]. 山东建筑大学学报, 2015, 30(3): 205-210.
SHI Tongguang, YUAN Tengfei, SHI Baiying. Bus turnaround time prediction research based on the BP neural network[J]. Journal of Shandong Jianzhu University, 2015, 30(3): 205-210.
[10] 许伦辉, 苏楠, 骈宇庄, 等. 基于优化极限学习机的公交行程时间预测方法[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 64-77.
XU Lunhui, SU Nan, PIAN Yuzhuang, et al. Bus travel time prediction based on extreme learning machine optimized by artificial bee colony algorithm[J]. Journal of Guangxi Normal University (Natural Science Edition), 2021, 39(5): 64-77.
[11] 彭新建, 翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 28-36.
PENG Xinjian, WENG Xiaoxiong. Bus travel time prediction based on BP neural network optimized by firefly algorithm[J]. Journal of Guangxi Normal University (Natural Science Edition), 2017, 35(1): 28-36.
[12] 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J/OL]. 复杂系统与复杂性科学, 2024,21(1): 1-11.
LI Ruochen, XIAO Renbin. Public opinion evolution prediction based on LSTM network optimized by improved wolf pack algorithm[J]. Complex Systems and Complexity Science, 2024,21(1): 1-11.
[13] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J].Neural Computation, 1997, 9(8): 1735-1780.
[14] NARUEI I, KEYNIA F, MOLAHOSSEINI A S. Hunter-prey optimization: Algorithm and applications[J]. Soft Computing, 2022, 26: 1279-1314. |