[1] 张强, 赵义欣, 伍瀚宇, 等. 涡流冲浪研究综述及其在民航领域的应用前景[J]. 飞行力学, 2020, 38(5): 14-19.
ZHANG Qiang, ZHAO Yixin, WU Hanyu, et al. Review of surfing aircraft vortices for energy and application prospects in civil aviation[J]. Flight Dynamics, 2020, 38(5): 14-19.
[2] NANGIA R K, BROWN N. Formation flying (air-wake-surfing) for efficient operations–NATO STO research task AVT- 279[C]//AIAA Scitech 2020 Forum. Orlando, F L. Reston, Virginia: AIAA, 2020: 1001.
[3] HUMMEL D. The use of aircraft wakes to achieve power reductions in formation flight[C]// Symposium on the Characterization & Modification of Wakes from Lifting Vehicles in Fluid. 1996.
[4] NING S A, KROO I, AFTOSMIS M J, et al. Extended formation flight at transonic speeds[J]. Journal of Aircraft, 2014, 51(5): 1501-1510.
[5] SLOTNICK J P. Computational aerodynamic analysis for the formation flight for aerodynamic benefit program[C]//52nd Aerospace Sciences Meeting. National Harbor, Maryland. Reston, Virginia: AIAA, 2014: 1458.
[6] 刘志勇. 紧密编队飞行涡流减阻机理及队形参数优化研究[D]. 合肥: 中国科学技术大学, 2016.
LIU Zhiyong.Study on Drag Reduction Mechanism of Vortex in Close Formation Flight and Optimization of Formation Parameters[D]. Hefei: University of Science and Technology of China, 2016.
[7] UNTERSTRASSER S, STEPHAN A. Far field wake vortex evolution of two aircraft formation flight and implications on young contrails[J]. The Aeronautical Journal, 2020, 124(1275): 667-702.
[8] 赵义欣. 基于涡流冲浪原理的客机遭遇尾流安全评估研究[D]. 广汉: 中国民用航空飞行学院, 2021.
ZHAO Yixin.Research on Safety Assessment of Passenger Aircraft Encountering Wake Based on Vortex Surfing Principle[D].Guanghan: Civil Aviation Flight University of China, 2021.
[9] 潘卫军, 王昊, 罗玉明, 等. ARJ21飞机尾流遭遇响应研究[J]. 安全与环境学报, 2022, 22(6): 3050-3058.
PAN Weijun, WANG Hao, LUO Yuming, et al. Research on wake encounterresponse of ARJ21 aircraft[J]. Journal of Safety and Environment, 2022, 22(6): 3050-3058.
[10] 潘卫军, 罗昊天, 罗玉明, 等. 不同侧风类型影响下的飞机尾涡数值模拟研究[J]. 科学技术与工程, 2023, 23(4): 1747-1759.
PAN Weijun, LUO Haotian, LUO Yuming, et al. Numerical simulation of aircraft wake vortex under the influence of different crosswind types[J]. Science Technology and Engineering, 2023, 23(4): 1747-1759.
[11] 潘卫军, 王靖开, 许亚星, 等. 近地阶段ARJ21飞机尾流遭遇安全性研究[J]. 科学技术与工程, 2022, 22(30): 13555-13561.
PAN Weijun, WANG Jingkai, XU Yaxing, et al. The safety of ARJ21 aircraft wake encounter during near-earth stage[J]. Science Technology and Engineering, 2022, 22(30): 13555-13561.
[12] 王永虎, 林天龙.基于k-ε湍流模型的结构物水流中跌落过程数值分析[J].重庆交通大学学报(自然科学版), 2019, 38(2):144-150.
WANG Yonghu, LIN Tianlong. Numerical analysis of fall process in water flow of structure based on k-ε turbulence model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(2):144-150.
[13] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431.
LIU Chaoqun. Liutex-third generation of vortex definition and identification methods[J].Acta Aerodynamica Sinica, 2020, 38(3): 413-431.
[14] HUNT J, WRAY A, MOIN P. Eddies, Streams, and Convergence Zones in Turbulent Flows: Center for Turbulence Research Proceedings of the Summer Program[R]. [S.l.]: [s.n. ], 1988.
[15] 冀楠,杨光,舒麟棹,等.基于重叠网格的桥墩防撞浮箱流场特性数值研究[J].重庆交通大学学报(自然科学版),2023,42(3):26-35.
JI Nan, YANG Guang, SHU Linzhao, et al. Numerical study on flow field characteristics of bridge pier anti-collision floating tank based on overlapping grid[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(3): 26-35.
[16] 王衍, 王达, 胡琼, 等. 基于CFD的T形槽气膜密封网格无关性分析[J]. 润滑与密封, 2018, 43(11): 70-73.
WANG Yan, WANG Da, HU Qiong, et al. Grid independence analysis of model T-groove gas film seal based on CFD[J]. Lubrication Engineering, 2018, 43(11): 70-73. |