[1] 左志亮, 张帆, 罗赤宇, 等. 缓黏结预应力混凝土梁耐久性能试验研究[J]. 土木工程学报, 2019, 52(9): 69-78.
ZUO Zhiliang, ZHANG Fan, LUO Chiyu, et al. Research on durability of retard-bonded prestressed concrete beams[J].China Civil Engineering Journal, 2019, 52(9): 69-78.
[2] ATHA D J, JAHANSHAHI M R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection[J]. Structural Health Monitoring, 2018, 17(5): 1110-1128.
[3] CHA Y, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747.
[4] 王达磊, 彭博, 潘玥, 等. 基于深度神经网络的锈蚀图像分割与定量分析[J]. 华南理工大学学报(自然科学版), 2018, 46(12): 121-127, 146.
WANG Dalei, PENG Bo, PAN Yue, et al. Segmentation and quantitative analysis of corrosion images based on deep neural networks[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(12): 121-127.
[5] ZHANG Sheng, DENG Xinling, LU Yumin, et al. A channel attention based deep neural network for automatic metallic corrosion detection[J]. Journal of Building Engineering, 2021, 42: 103046.
[6] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[7]RAHMAN A, WU Zheng yi, KALFARISI R. Semantic deep learning integrated with RGB feature-based rule optimization for facility surface corrosion detection and evaluation[J]. Journal of Computing in Civil Engineering, 2021, 35(6): 1943-5487.0000982.
[8] 倪有豪, 陆欢, 季超, 等. 基于语义分割的桥梁锈蚀病害识别对比分析[J]. 东南大学学报(自然科学版), 2023, 53(2): 201-209.
NI Youhao, LU Huan, JI Chao, et al. Comparative analysis on bridge corrosion damage detection based on semantic segmentation[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(2): 201-209.
[9] 王凌云, 李婷宜, 李阳, 等. 基于FEF-DeepLabV3+的电力金具锈蚀分割方法[J]. 电子测量与仪器学报, 2023, 37(7): 166-176.
WANG Lingyun, LI Tingyi, LI Yang, et al. Segmentation method of power armor clamp corrosion based on FEF-DeepLabV3+[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(7): 166-176.
[10] 张梦柳. 基于改进Deeplabv3+网络的野外露头区岩石裂缝分割研究[D]. 大庆: 东北石油大学, 2023.
ZHANG Mengliu. Research on Rock Fracture Segmentation in Outcrop Area Based on Improved Deeplabv3+[D].Daqing: Northeast Petroleum University, 2023.
[11] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362.
QI Xuanhao, ZHI Min. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362.
[12] 赵树恩,龚志坤,刘伟.基于改进MobileNet的公路行车环境安全风险源识别[J].重庆交通大学学报(自然科学版),2024,43(1):75-82.
ZHAO Shuen, Gong Zhikun, LIU Wei. Identification of safety risk sources of highway driving environment based on improved MobileNet [J]. Journal of Chongqing Jiaotong University( Natural Science), 2024,43(1):75-82.
[13] 温佳, 梁喜凤, 王永维. 基于改进的Deep Lab V3+网络模型的杂交水稻育种父母本语义分割研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 893-902.
WEN Jia, LIANG Xifeng, WANG Yongwei. Research on semantic segmentation of parents in hybrid rice breeding based on improved DeepLabV3+ network model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 893-902.
[14] 顾文娟, 魏金, 阴艳超, 等. 基于改进DeepLabv3+的番茄图像多类别分割方法[J]. 农业机械学报, 2023, 54(12): 261-271.
GU Wenjuan, WEI Jin, YIN Yanchao, et al. Multi-category segmentation method of tomato image based on improved DeepLabv3+[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 261-271. |