[1] ZHANG Hui, SONG Yanan, CHEN Yurong, et al. MRSDI-CNN:Multi-model rail surface defect inspection system based on convolutional neural networks [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11162-11177.
[2] XUE Zhiqiang, XU Yude, HU Meng, et al. Systematic review: Ultrasonic technology for detecting rail defects [J]. Construction and Building Materials, 2023, 368: 130409.
[3] WANG Yi, WANG Yuhui, WANG Ping, et al. Rail magnetic flux leakage detection and data analysis based on double-track flaw detection vehicle [J]. Processes, 2023, 11(4): 1024.
[4] SHLYAKHTENKOV S P, NEKRASOV D B, PALAGIN S V, et al. Possibilities of manual eddy current testing for depth gaging of contact-fatigue cracks on rail rolling surface [J]. Russian Journal of Nondestructive Testing, 2023, 59(4): 447-455.
[5] 刘俊博, 杜馨瑜, 王胜春, 等. 基于少样本学习的钢轨表面缺陷检测方法[J]. 铁道学报, 2022, 44(7): 72-79.
LIU Junbo, DU Xinyu, WANG Shengchun, et al. Rail surface defect detection method based on few-shot learning [J]. Journal of the China Railway Society, 2022, 44(7): 72-79.
[6] WANG Hao, LI Mengjiao, WAN Zhibo. Rail surface defect detection based on improved mask R-CNN [J]. Computers and Electrical Engineering, 2022, 102: 108269.
[7] NI Xuefeng, MA Ziji, LIU Jianwei, et al. Attention network for rail surface defect detection via consistency of intersection-over-union (IoU)-guided center-point estimation [J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1694-1705.
[8] LIU Yu, XIAO Huaxi, XU Jiaming, et al. A rail surface defect detection method based on pyramid feature and lightweight convolutional neural network [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5009510.
[9] MI Zengzhen, CHEN Ren, ZHAO Shanshan. Research on steel rail surface defects detection based on improved YOLOv4 network [J]. Frontiers in Neurorobotics, 2023, 17: 1119896.
[10] 韩强, 刘俊博, 冯其波, 等. 基于多层级特征融合的钢轨表面伤损检测方法[J]. 中国铁道科学, 2021, 42(5): 41-49.
HAN Qiang, LIU Junbo, FENG Qibo, et al. Damage detection method for rail surface based on multi-level feature fusion [J]. China Railway Science, 42(5), 41-49.
[11] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C] ∥European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[12] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design [C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708-13717.
[13] 向宽, 李松松, 栾明慧, 等. 基于改进Faster RCNN的铝材表面缺陷检测方法[J]. 仪器仪表学报, 2021, 42(1): 191-198.
XIANG Kuan, LI Songsong, LUAN Minghui, et al. Aluminum product surface defect detection method based on improved Faster RCNN [J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 191-198.
[14] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201-1227.
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: A survey [J]. Journal of Software, 2021, 32(4): 1201-1227.
[15] JIANG Wenbo, LIU Min, PENG Yunuo, et al. HDCB-net: A neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges [J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5485-5494.
[16] GAN Jinrui, LI Qingyong, WANG Jianzhu, et al. A hierarchical extractor-based visual rail surface inspection system [J]. IEEE Sensors Journal, 2017, 17(23): 7935-7944. |