中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 1993, Vol. 12 ›› Issue (4): 109-116.

Previous Articles    

The Solutions of Diophantine Congruence Equation x2n+(x+1)2n+…+(x+h)2n≡(x+h+1)2n(mod 17) (I)

Zou Zhaonan, Chen Julin   

  1. Department of Basic Courses
  • Received:1992-11-05 Online:1993-08-23 Published:2016-11-10

不定同余方程x2n+(x+1)2n+…+(x+h)2n≡(x+h+1)2n(mod17)的解(Ⅰ)

邹兆南, 陈菊林   

  1. 重庆交通学院基础部, 630074
  • 作者简介:邹兆南,男,53岁,副教授

Abstract: In this paper, we have proved that for the diophantinc congruence equation x2n+(x+1)2n+…+(x+h)2n≡(x+h+1)2n (mod 17) there arc integer solutions if and only if (1) when n=1 (mod8), then h≢3, 4, 5, 6, 10, 11, 13 (mod 17); (2) when n≡2 (mod8), then h≢3, 4, 8, 9, 10, 14 (mod 17); (3) when n≡3 (mod8), then h≢6, 10, 11 (mod 17).

Key words: module, congruence equation, minimal nonnegative residue, Fennat's theorem

摘要: 本文证明了:同余方程x2n+(x+1)2n+…+(x+h)2n≡(x+h+1)2n(mod 17)有整数解的充分必要条件是(1)若n≡1(mod 8),则h≢3,4,5,6,10,13(mod 17);(2)若n≡2(mod 8),则h≢3,4,8,9,1O,14(mod 17);(3)若n≡3(mod 8),则h≢6,10,11,(mod 17)。

关键词: 模, 同余方程, 最小非负剩余, Fermat定理