[1] 梅树立,陆启韶,张森文.求解非线性偏微分方程的自适应小波精细积分法[J].计算物理,2004,21(6):523-530.
MEI Shuli, LU Qishao, ZHANG Senwen. An adaptive wavelet precise integration method for partial differential equations[J]. Chinese
Journal of Computational Physics, 2004, 21(6): 523-530.
[2] 董宇,杨翊仁,鲁丽. 基于微分求积法的轴向流作用下二维板复杂响应研究[J]. 振动与冲击,2015,34(6):46-51.
DONG Yu, YANG Yiren, LU Li. Complicated responses of a two-dimensional plate under action of an axial liquid flow with differential
quadrature method[J]. Journal of Vibration and Shock, 2015, 34(6): 46-51.
[3] 孙雁,陈晓辉,钟万勰. 非线性方程的保辛近似算法[J].力学季刊,2006,27(3):365-370.
SUN Yan, CHEN Xiaohui, ZHONG Wanxie. Symplectic conservative integration for nonlinear differential equation[J]. Chinese Quarterly
of Mechanics, 2006, 27(3): 365-370.
[4] 孙雁,高强,钟万勰. 保辛-保能的数值积分[J]. 应用数学和力学, 2014,35(8):831-837.
SUN Yan, GAO Qiang, ZHONG Wanxie. Numerical integration algorithm of the symplectic-conservative and energy-preserving method[J].
Applied Mathematics and Mechanics, 2014, 35(8): 831-837.
[5] 胡海岩.应用非线性动力学[M]. 北京:航空工业出版社,2000.
HU Haiyan.Applied Nonlinear Transient Dynamical[M]. Beijing: Aviation Industry Press, 2000.
[6] 钟万勰. 应用力学的辛数学方法[M]. 北京:高等教育出版社,2006.
ZHONG Wanxie.Symplectic Mathematics Method in Applied Mechanics[M]. Beijing: Higher Education Press, 2006.
[7] 张雄,刘岩. 无网格法[M]. 北京:清华大学出版社,2004.
ZHANG Xiong, LIU Yan. Meshless Method[M]. Beijing: Tsinghua University Press, 2004.
[8] FEDOSYEV A I, FRIEDMAN M J, KANSA E J. Improved multi-quadric method for elliptic partial differential equations via PDE
collocation on the boundary[J]. Computers & Mathematics with Applications, 2002, 43(3): 439-455.
[9] 王莉华,仲政. 基于径向基函数配点法的梁板弯曲问题分析[J]. 固体力学学报,2012,33(4):349-357.
WANG Lihua, ZHONG Zheng. Radial basis collocation method for bending problems of beam and plate[J]. Chinese Journal of Solid
Mechanics, 2012, 33(4): 349-357.
[10] 徐绩青,李正良,吴林键. 基于径向基函数逼近的结构动力响应计算方法[J]. 应用数学和力学,2014,35(5):533-541.
XU Jiqing, LI Zhengliang, WU Linjian. A calculation method for structural dynamic responses based on the approximation theory of
radial basis function[J]. Applied Mathematics and Mechanics, 2014, 35(5): 533-541.
[11] 洪文强,徐绩青,许锡宾,等. 求解Bratu型方程的径向基函数逼近法[J]. 应用数学和力学,2016,37(6):617-625.
HONG Wenqiang, XU Jiqing, XU Xibin, et al. The radial basis function approximation method for solving Bratu-type equations[J].
Applied Mathematics and Mechanics, 2016, 37(6): 617-625.
[12] 李岩汀,许锡宾,周世良,等. 基于径向基函数逼近的非线性动力系统数值求解[J]. 应用数学和力学,2016,37(3):311-318.
LI Yanting, XU Xibin, ZHOU Shiliang, et al. A numerical approximation method for nonlinear dynamic system based on radial bases
functions[J]. Applied Mathematics and Mechanics, 2016, 37(3): 311-318.
[13] 吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报,2002,19(2):1-12.
WU Zongmin. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs[J]. Chinese
Journal of Engineering Mathematics, 2002, 19(2): 1-12.
[14] BUHMANN M D. Radical Basis Functions: Theory and Implementations[M]. Cambridge, UK: Cambridge University Press, 2009.
[15] WU Zongmin. Compactly supported positive definite radial functions[J]. Advances in Computational Mathematics, 1995, 4(1):
283-292.
[16] 马利敏. 径向基函数逼近中的若干理论、方法及其应用[D]. 上海:复旦大学,2009.
MA Limin. Some Theory, Methods and Application in RBF Approaching[D]. Shanghai: Fudan University, 2009.
[17] FORNOBERG B, DRISCOLL T A, WRIGHT G, et al. Observations on the behavior of radial basis function approximations near
boundaries[J]. Computers & Mathematics with Applications, 2002, 43(3): 473-490.
[18] ARGYROS I K, HILOUT S. On the Gauss-Newton method[J]. Journal of Applied Mathematics and Computing, 2011, 35(1): 537-550.
[19] YAO Leihua, GUO Yufei. Hybrid algorithm for parameter estimation of the groundwater flow model with an improved genetic
algorithm and Gauss-Newton method[J]. Journal of Hydrologic Engineering, 2014, 19(3): 482-494.
[20] 刘小靖,王记增,周又和.一种适用于强非线性结构力学问题数值求解的修正小波伽辽金方法[J]. 固体力学学报,2011,32(3): 249-257.
LIU Xiaojing, WANG Jizeng, ZHOU Youhe. A modified wavelet-Galerkin method for computations in structural mechanics with strong
nonlinearity[J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 249-257. |