[1] ZHANG W, CHENG H, HAO L, et al. An obstacle avoidance algorithm for robot manipulators based on decision-making force[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102-114.
[2] 余腾伟,刘昌力.动态环境下的移动机器人避障策略研究[J].重庆交通大学学报(自然科学版),2021,40(9):131-136.
YU Tengwei, LIU Changli. Obstacle avoidance strategy for mobile robots in dynamic environment[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(9): 131-136.
[3] 姜康,王皓,陈佳佳.复杂障碍物环境下基于转向约束的智能汽车路径规划方法研究[J].重庆交通大学学报(自然科学版),2021,40(9):137-144.
JIANG Kang, WANG Hao, CHEN Jiajia. Intelligent vehicle path planning method based on steering constraints in complex obstacle environment[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(9):137-144.
[4] CHEN Z, WANG Z, WU M, et al. Improved dynamic window approach for dynamic obstacle avoidance of quadruped robots[C]∥ Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Singapore: IEEE, 2020: 2780-2785.
[5] HE J H, CHEN Y L, CHIANG H H, et al. Dynamic obstacle avoidance based on a dynamic space-time grid map for mobile robots[C]∥Proceedings of 2021 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, USA: IEEE, 2021: 1-3.
[6] RAWIKARA S S, SASONGKO R A. Dynamic obstacle avoidance system for the unmanned aerial vehicle (UAV)[C]∥Proc of IOP Conference Series: Materials Science and Engineering. Indonesia: IOP Publishing, 2021, 1173(1): 12-54.
[7] FULGENZI C, SPALANZANI A, LAUGIER C. Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid[C]. Proc of 2007 IEEE International Conference on Robotics and Automation. Roma, Italy: IEEE, 2007: 1610-1616.
[8] MACENSKI S, MARTN F, WHITE R, et al. The Marathon 2: A navigation system[C]∥Proceedings of 2020 IEEE International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: IEEE, 2020: 2718-2725.
[9] WANG Z, TOTA A, AKSUN-GUVENC B, GUVENC L. Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method [J]. Mechatronics, 2018, 50: 341-355.
[10] MAGYAR B, TSIOGKAS N, DERAY J, et al. Timed-elastic bands for manipulation motion planning[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3513-3520.
[11] SMITH J S, XU R, VELA P. TEB: Egocentric, Perception pace navigation using timed-elastic-bands[C]∥Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 2703-2709.
[12] GREENBERG J N, TAN X. Dynamic optical localization of a mobile robot using Kalman filtering-based position prediction[J]. IEEE Transactions on Mechatronics, 2020, 25(5): 2483-2492.
[13] ROSMANN C, HOFFMANN F, BERTRAMT T. Online Trajectory Planning in ROS under Kino-dynamic Constraints with Timed-Elastic-Bands[M]. Cham: Springer, 2017.
[14] ROSMANN C, HOFFMANN F, BERTRAMT T. Integrated online traj-ectory planning and optimization in distinctive topologies[J]. Robotics and Autonomous Systems, 2017, 88: 142-153.
[15] ROSMANN C, HOFFMANN F, BERTRAMT T. Kinodynamic trajectory optimization and control for car-like robots[C]∥Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017: 5681-5686. |