[1] 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560.
ZHAO Zhenbing, JIANG Zhigang, LI Yanxu, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560.
[2] ZHANG Zhaoyun, HUANG Shihong, LI Yanxin, et al. Image detection of insulator defects based on morphological processing and deep learning[J]. Energies, 2022, 15(7): 2465.
[3] 何宁, 史旺旺. 电力巡检中绝缘子缺失故障检测的图像处理方法研究[J]. 现代电子技术, 2022, 45(23): 45-48.
HE Ning, SHI Wangwang. Image processing method for insulator missing failure detection in power inspection[J]. Modern Electronics Technique, 2022, 45(23): 45-48.
[4] SHANG Fang, ZHU Mingze, LIU Sheng, et al. Fast detection method of insulator fault based on image processing technology[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing, China. IEEE, 2020: 400-406.
[5] 姜香菊, 杜晓亮. 基于深度学习和灰度纹理特征的铁路接触网绝缘子状态检测[J]. 光电子.激光, 2022, 33(5): 513-520.
JIANG Xiangju, DU Xiaoliang. State detection of railway catenary insulators based on deep learning and gray-scale texture features[J]. Journal of Optoelectronics Laser, 2022, 33(5): 513-520.
[6] TANG Jinpeng, WANG Jiang, WANG Hailin, et al. Insulator defect detection based on improved faster R-CNN[C]//2022 4th Asia Energy and Electrical Engineering Symposium (AEES). Chengdu, China. IEEE, 2022: 541-546.
[7] LIU Xuan, LI Yong, SHUANG Feng, et al. ISSD: Improved SSD for insulator and spacer online detection based on UAV system[J]. Sensors, 2020, 20(23): 6961.
[8] 高黎明. 基于轻量化目标检测的绝缘子缺陷识别[J]. 高压电器, 2023, 59(12): 237-244.
GAO Liming. Insulator defect identification based on lightweight object detection[J]. High Voltage Apparatus, 2023, 59(12): 237-244.
[9] ZHENG Jianfeng, WU Hang, ZHANG Han, et al. Insulator-defect detection algorithm based on improved YOLOv7[J]. Sensors, 2022, 22(22): 8801.
[10] CHEN Yifu, LIU Hongye, CHEN Jiahao, et al. Insu-YOLO: An insulator defect detection algorithm based on multiscale feature fusion[J]. Electronics, 2023, 12(15): 3210.
[11] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132-7141.
[12] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708-13717.
[13] ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[14] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 658-666. |