中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2013, Vol. 32 ›› Issue (4): 652-655.DOI: 10.3969 /j.issn.1674-0696.2013.04.25

Previous Articles     Next Articles

Classification of Urban Expressway Traffic Flow Situation Based on Fuzzy Clustering

Yin Junjie,Ding Hongfei,Bo Wu,Zhong Mei   

  1. School of Traffic & Transportation,Southwest Jiaotong University,Chengdu 610031,Sichuan,China
  • Received:2012-05-22 Revised:2013-04-27 Online:2013-08-15 Published:2014-10-27

基于模糊聚类的城市快速路交通流状态划分

殷俊杰,丁宏飞,薄 雾,钟 媚   

  1. 西南交通大学 交通运输与物流学院,四川 成都 610031
  • 作者简介:殷俊杰(1988—),男,四川成都人,硕士研究生,主要从事智能交通及交通工程方面的研究。E-mail:420164881@qq.com。
  • 基金资助:
    四川省科技支撑计划项目( 2011FZ0050)

Abstract: In order to solve the problem of urban expressway traffic flow situation judgment,an improved algorithm which uses fuzzy C-means clustering method is proposed. Based on the combination of FCM algorithm and hierarchical clustering algorithm,the hierarchical clustering algorithm is firstly used to get the number of cluster type and initial cluster centers; then Relief F algorithm is used to calculate the weights of the chose features,which affects the division of the traffic conditions;at last FCM is used to perform the cluster to obtain the division results of traffic conditions. A simulation is performed by software VISSIM to confirm the proposed methodology. Through the comparative analysis,it is obtained that the propose method can improve the classification results of urban expressway traffic flow situation.

Key words: traffic conditions, fuzzy cluster, hierarchical clustering, feature weight, Relief F algorithm

摘要: 针对城市快速路交通流状态分类的问题,提出了一种改进的模糊 C 均值( FCM) 算法。结合层次聚类算法和FCM 聚类算法,运用层次聚类算法得到最佳聚类数和初始聚类中心,并通过 Relief F 特征加权对影响交通状态的不同特征指标赋予相应的权值,最终用 FCM 算法再次聚类得出交通流状态的分类结果。以 VISSIM 为工具,对该方法进行了模拟。对比分析结果显示,所提出的方法能够提高城市快速路交通流状态分类的效果。

关键词: 交通状态, 模糊聚类, 层次聚类, 特征加权, Relief F 算法

CLC Number: