中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2015, Vol. 34 ›› Issue (3): 112-116.DOI: 10.3969/j.issn.1674-0696.2015.03.23

Previous Articles     Next Articles

A Traffic Incident Duration Time Predication Model Using Multivariable Decision Tree

Xiang Hongyan1, Jin Ming2   

  1. 1. School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China;2. School of Automotive Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
  • Received:2014-07-01 Revised:2014-09-22 Online:2015-06-20 Published:2015-07-07

基于多变量决策树交通事件持续时间预测模型

向红艳1,金明2   

  1. 1.重庆交通大学 交通运输学院,重庆 400074;2.重庆工业职业技术学院 车辆工程学院,重庆 401120
  • 作者简介:向红艳(1980-),女,湖北恩施人,副教授,博士,主要从事交通运输规划与管理方面的研究。E-mail:xiang-@126.com。

Abstract: Using theory and method of rough set and decision tree, a multivariable decision tree model was developed for traffic incident duration time prediction. Through analyzing the incident attributes, the attribute reduction algorithm in rough set theory was used to get the core attributes of the incident. By using the generalization principle of equivalence relation, a multivariable combination test was formed. By comparing the dependence of different variable combinations, the optimal variable combination was determined. Then, multivariable combination criterion instead of single variable criterion was used to set up the decision tree, and through limiting tree height and number of tree leaves, the scale of tree was controlled, so, the tree’s structure was optimized. The case study shows that this model has a good performance in classifying and forecasting traffic incident duration time, and it has good accuracy in duration time forecasting.

Key words: traffic engineering, duration, rough set, multivariable decision tree, predication

摘要: 基于粗集理论和决策树方法,建立了交通事件持续时间的多变量决策树预测模型。通过分析交通事件的属性特点,运用粗集理论中的属性约简方法,确定了交通事件的核心属性;运用等价关系相对泛化原理构造了多变量组合检验,并根据变量依赖度确定了最优变量组合;以多变量组合判据代替单变量判据建立了决策树模型,利用决策树高度和节点样本数对树的规模进行控制,优化了决策树结构。实例应用表明,该模型对交通事件持续时间的分类和预测能力较强,预测精度较高。

关键词: 交通工程, 持续时间, 粗糙集, 多变量决策树, 预测

CLC Number: