中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2021, Vol. 40 ›› Issue (07): 31-38.DOI: 10.3969/j.issn.1674-0696.2021.07.05

• Transport+Big Data and Artificial Intelligence • Previous Articles     Next Articles

Short Term Forecast of Rail Transit Passenger Flow Based on Time Series Seasonal Classification Model

TANG Jiqiang1,2, ZHONG Xinwei2, LIU Jian1, LI Tianrui3   

  1. (1.Chongqing Rail Transit (Group) Co. Ltd., Chongqing 401120, China; 2. College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China; 3. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, Sichuan, China)
  • Received:2020-04-20 Revised:2020-06-30 Online:2021-07-12 Published:2021-07-23

基于时间序列季节分类模型的轨道交通客流短期预测

唐继强1, 2,钟鑫伟2,刘健1,李天瑞3   

  1. (1. 重庆市轨道交通(集团)有限公司,重庆 401120; 2. 重庆理工大学 计算机科学与工程学院,重庆 400054; 3. 西南交通大学 信息科学与技术学院,四川 成都 611756)
  • 作者简介:唐继强(1980—),男,重庆人,讲师,博士,主要从事轨道交通大数据分析方面的研究。E-mail:tjq@cqut.edu.cn
  • 基金资助:
    重庆市轨道交通(集团)有限公司博士后资助项目(2019-347-37)

Abstract: In the analysis of rail transit passenger flow, the seasonal characteristics of data have a significant impact on the effectiveness of passenger flow forecast. By analyzing the passenger flow curves of rail transit, it was found that the passenger flow of rail transit presented seasonal characteristics. Aiming at this kind of characteristics, a passenger flow forecast approach of rail transit based on seasonal classification model was proposed. Firstly, the seasonal classification template and seasonal time series were established according to the seasonal characteristics of passenger flow. Secondly, the seasonal classification model of passenger flow was established by the multiplicative seasonal autoregressive differential moving average model. Finally, the seasonal classification model was used to forecast the passenger flow on the corresponding dates. The experiment shows that the proposed seasonal classification model can not only effectively predict the passenger flow of rail transit, but also avoid the fluctuation of prediction error.

Key words: traffic engineering, short term forecast of passenger flow, seasonal classification model, time series, multiplicative seasonal autoregressive differential moving average model

摘要: 轨道交通客流的分析中,数据季节性特征对客流预测的有效性存在显著影响。通过分析轨道交通客流曲线,发现轨道交通客流呈现出季节性特征;针对这种特征,提出基于季节分类模型的轨道交通客流预测方法。根据客流季节特征建立季节分类模板和季节时间序列;采用乘法季节自回归差分滑动平均模型建立客流季节分类模型;使用季节分类模型预测对应类型日期的客流。实验表明:季节分类模型既能有效预测轨道交通客流,又能较好地避免预测误差波动性问题。

关键词: 交通工程, 客流短期预测, 季节分类模型, 时间序列, 乘法季节自回归差分滑动平均模型

CLC Number: