中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 1990, Vol. 9 ›› Issue (1): 54-60,53.

Previous Articles     Next Articles

Asymptotic Behaviours of Nonlinear Ordinary Differential Equation with Delay Integral Perturbation Term

Xu Anshi   

  1. Department of Mathematics, Sichuan University, Chengdu
  • Received:1989-03-15 Online:1990-02-23 Published:2016-11-08

具时滞积分扰动项的非线性常微分方程解的渐近性

徐安石   

  1. 成都:四川大学数学系

Abstract: The asymptotic behaviours of the solutions to the nonlinear differential equation of the type with delays:y'(t)=f(t,y(t))+g(t,y(t)y(t-τ(t))∫t0th(t,s,y(s),y(s-τ(s)))as)t∈[t0,∞]yR are studied.The main tools used here are new integral inequalitieg. The sufficient conditions on boundedness, stability and exponential asymptotic stability of the solutions are established.

Key words: integral inequalities, delay differential equation, boundedness, stability, exponential asymptotic stability

摘要: 我们利用为作者得到的一类新的积分不等式研究了如下的具时滞的微分方程:y'(t)=f(t,y(t))+g(t,y(t)y(t-τ(t))∫t0th(t,s,y(s),y(s-τ(s)))as)t∈[t0,∞]yR得到了解的有界性、稳定性和指数渐近稳定性的充分条件。

关键词: 积分不等式, 时滞微分方程, 有界性, 稳定性, 指数渐近稳定性